Extending the reach of the shell model

Calvin W. Johnson Oliver C. Gorton

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-96ER40985,
and by the Office of High Energy Physics, under Award No.~DE-SC0019465, and
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with support from the ACT-UP award"

TRIUMF ab initio workshop Feb 28, 2023 UNIVERSITY

"It's not enough to just show up. You have to have a business plan."

This talk is about extending the reach of a powerful tool: the configurationinteraction shell model

I am interested in more than 'proof of principle': I want 'proof of practicality'

SAN DIEGO STATE UNIVERSITY
 "empirical" shell model with an eye towards NCSM
(ab initio)

This talk is about extending the reach of a powerful tool: the configurationinteraction shell model

I am interested in more than 'proof of principle': I want 'proof of practicality'

AppLICATIONS

- Dark matter targets: some targets for dark matter (e.g. ${ }^{40} \mathrm{Ar}$) are in very large model spaces. (Similarly for neutrino targets)
* Beta decays: beta-delayed neutron emission in fission fragments (with Escher at LLNL); independently, look at beta decays of neutron-rich nuclides relevant to FRIB.
* Hadronic parity violation: Experimental measurement of the anapole moment in heavy nuclides is underway (D. DeMille et al; Also TRIUMF's RadMol experiment)
* Inputs for reactions in medium to heavy nuclei, including spectroscopic factors.

SAN DIEGO State UNIVERSITY

We want to solve Schrödinger 's equation:

$$
\left(\sum_{i}-\frac{\hbar^{2}}{2 m} \nabla^{2}+U\left(r_{i}\right)+\sum_{i<j} V\left(\vec{r}_{i}-\vec{r}_{j}\right)\right) \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \ldots\right)=E \Psi
$$

but as a matrix equation

$$
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle
$$

SAN Diego State

 UNIVERSITYThe matrix formalism:
expand in some (many-body) basis
$\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle$
$|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle$
$\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}$

TRIUMF ab initio workshop Feb 28, 2023

Today focus on

"empirical" shell model with an eye towards NCSM
The matrix formalism:
expand in some (many-body) basis (ab initio)

$$
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle
$$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

$$
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}
$$

Choice of wave function basis

M-scheme: basis states with fixed total J_{z} Simple and easy to construct/work with One can make each "Slater determinant" have good M Requires large dimension basis

n_{i}	1	2	3	4	5	6	7
$\alpha=1$	1	0	0	1	1	0	1
$\alpha=2$	1	0	1	0	0	1	1
$\alpha=3$	0	1	1	1	0	1	0

That's

 because the subgroup for J_{z} is abelianEach of these single-particle states have a fixed value of ' m ' and one obtains total ' M ' by just summing

Some typical M-scheme basis

TRIUMF ab initio workshop Feb 28, 2023

TRIUMF ab initio workshop Feb 28, 2023

A sampling menu of dimensionalities

$$
\begin{aligned}
& { }^{12} \mathrm{C}_{\max }=4 \quad \text { dim } 1 \text { million } \\
& { }^{12} \mathrm{C}_{\max }=6 \mathrm{dim} 30 \text { million } \\
& { }^{12} \mathrm{C} \mathrm{~N}_{\max }=8 \mathrm{dim} 500 \text { million } \\
& { }^{12} \mathrm{C}_{\max }=10 \mathrm{dim} 7.8 \text { billion } \\
& { }^{12} \mathrm{C}_{\max }=12 \text { dim } 81 \text { billion }
\end{aligned}
$$

Largest (?) known calculation, ${ }^{6} \mathrm{Li}, \mathrm{N}_{\max }=22$, 25 billion (Forssen et al, PRC 97, 034328 (2018). with pANTOINE)

A Problem....

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store
${ }^{56} \mathrm{Fe}$	$p f$	501 M	3.5 Tb
${ }^{7} \mathrm{Li}$	$\mathrm{N}_{\max }=12$	252 M	3.6 Tb
${ }^{7} \mathrm{Li}$	$\mathrm{N}_{\max }=14$	1200 M	23 Tb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=6$	32 M	0.2 Tb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=8$	590 M	5 Tb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=10$	7800 M	111 Tb
${ }^{16} \mathrm{O}$	$\mathrm{N}_{\max }=6$	26 M	0.14 Tb
${ }^{16} \mathrm{O}$	$\mathrm{N}_{\max }=8$	990 M	9.7 Tb

Possible solution:
Spread nonzero matrix elements over many MPI compute nodes
(i.e., code MFDn by J. Vary et al.)

A Problem....

Despite sparsity, nonzero matrix elements can require TB of storage

A Problem....

Despite sparsity, nonzero matrix elements can require TB of storage

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

For fast calculation these are typically bit strings, or "occupation representation of Slater determinants"

$$
\begin{aligned}
& |\Psi\rangle=\underset{\mu v}{\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle} \downarrow \downarrow \\
& 01101000 \ldots\rangle|10010100 \ldots\rangle
\end{aligned}
$$

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

Some Shell-Model Codes

Matrix storage:
Oak Ridge-Rochester (small matrices)
Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos)
OXBASH /Oxford-MSU (J-scheme, stored on disk)
MFDn/ Iowa State (M-scheme, stored in RAM)
MCSM/ Tokyo (J-scheme from selected states)
Importance Truncation SM/Darmstadt (M-scheme from selected states) Sym Adapted SM / LSU

Factorization/on-the-fly:
ANTOINE Strasbourg (M-scheme; originator of on-the-fly)
NATHAN Strasbourg (J-scheme)
NuShell/NuShellX (J-scheme)
MSHELL64 / KSHELL Tokyo (M-scheme)
BIGSTICK/ LSU-SDSU-Livermore

The BIGSTICK public shell-model code!

Download from: github.com/cwjsdsu/BigstickPublick
Manual at arXiv:1801.08432

Authors: CWJ, Erich Ormand, K. McElvain, H.Z. Shan, R. Zbikowski

```
Uses "factorization" algorithm: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013)
```

Runs on both desktop and parallel machines
--can run at least dimension $300 \mathrm{M}+$ on desktop --has done dimension 20 billion+ on supercomputers

TRIUMF ab initio workshop Feb 28, 2023

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
${ }^{56} \mathrm{Fe}$	$p f$	501 M	3500 Gb	0.72 Gb
${ }^{7} \mathrm{Li}$	$\mathrm{N}_{\max }=12$	252 M	3800 Gb	61 Gb
${ }^{7} \mathrm{Li}$	$\mathrm{N}_{\max }=14$	1200 M	23 Tb	624 Gb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=6$	32 M	196 Gb	3.3 Gb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=8$	590 M	5000 Gb	65 Gb
${ }^{12} \mathrm{C}$	$\mathrm{N}_{\max }=10$	7800 M	111 Tb	1.4 Tb
${ }^{16} \mathrm{O}$	$\mathrm{N}_{\max }=6$	26 M	142 Gb	3.0 Gb
${ }^{16} \mathrm{O}$	$\mathrm{N}_{\max }=8$	990 M	9700 Gb	130 Gb

For fast calculation these are typically bit strings, or "occupation representation of Slater determinants"

$$
\begin{gathered}
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
|0101000 \ldots . .| 10010100 . . .\rangle
\end{gathered}
$$

> Even with the efficiencies of modern codes, the dimension can be too large to handle

TRIUMF ab initio workshop Feb 28, 2023

It is easy to get to model spaces beyond our reach:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 h_{11 / 2}\right)$
${ }^{128} \mathrm{Te}$: dim 13 million (laptop)
${ }^{127}$ I: $\operatorname{dim} 1.3$ billion (small supercomputer)
${ }^{128} \mathrm{Xe}$: dim 9.3 billion (supercomputer)
${ }^{129} \mathrm{Cs}$: dim 50 billion (haven't tried!)
${ }^{130} \mathrm{Ba}: \operatorname{dim} 200$ billion!!
${ }^{128} \mathrm{Ce}$: dim 49 trillion!!!

SAN Diego State UNIVERSITY
Alternate approach for medium/heavy nuclei: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate to just a few components?

Alternate approach for medium/heavy nuclei: Proton-neutron factorization

$$
\begin{gathered}
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
\left(a_{1}|010110 \ldots\rangle+a_{2}|110010 \ldots\rangle+a_{3}|001011 \ldots\rangle+\ldots \ldots\right)
\end{gathered}
$$

No longer single "Slater determinants" but linear combinations...

Alternate approach for medium/heavy nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate to just a few components?
Priori work by Papenbrock, Juodagalvis, Dean, Phys. Rev. C 69, 024312 (2004), focused on N =Z
similar to DMRG (density-matrix renormalization group) (but not exactly)

Why we think this could work:
Decompose full wfn into proton, neutron components

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

$f r a c_{\mu}=\sum_{\nu}\left|c_{\mu \nu}\right|^{2} \quad \begin{aligned} & =\text { fraction of full wave function with } \\ & \text { proton (eigen)state } \mu\end{aligned}$
(one can compute this very efficiently with the Lanczos algorithm, using just the proton part of the full Hamiltonian)
${ }^{52} \mathrm{Fe}$ in $p f$-shell with GX1A interaction decomposition of g.s.

These energies are the eigenenergies of 6 valence protons in the $p f$ shell TRIUMF ab initio workshop Feb 28, 2023
$p f$-shell with GX1A interaction
decomposition into proton components

Note exponential
(Boltzmann) fall-off
TRIUMF ab initio workshop Feb 28, 2023

Example application:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 h_{11 / 2}\right)$
${ }^{129} \mathrm{Cs}: \mathrm{M}$-scheme dim 50 billion (haven't tried!)

Proton Slater determinant dimension: 14,677 Neutron Slater determinant dimension: 646,430

We have written a code (O. Gorton)
 Proton And Neutron Approximate Shell model: PANASh

We want to find solutions to
$\hat{H}|\Psi\rangle=E|\Psi\rangle$ where $\quad \hat{H}=\hat{H}_{p p}+\hat{H}_{n n}+\hat{H}_{p n}$
We solve $\quad \hat{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \hat{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
and choose certain $\left|\Psi_{p}\right\rangle\left|\Psi_{n}\right\rangle$ as basis for diagonalization;

Using BIGSTICK we construct many-proton states of good J

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a J-scheme code with fixed J for basis:
Oliver Gorton

$$
\left.\left|\Psi_{J}\right\rangle=\sum_{a b} c_{a b}\left\langle\Psi_{p} a, J_{p}\right\rangle \otimes\left(\Psi_{n} b, J_{n}\right\rangle\right)^{\text {same here, }} \begin{aligned}
& \text { only for neutrons }
\end{aligned} \begin{aligned}
& \text { We don't take all possible of these, } \\
& \text { but choose those lowest in energy } \\
& \text { when solving the proton-only system }
\end{aligned}
$$

TRIUMF ab initio workshop Feb 28, 2023

SAN Diego State UNIVERSITY
Using BIGSTICK we construct many-proton states of good J

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a J-scheme code with fixed J for basis:
Oliver Gorton

Oliver Gorton

 energies + densities

PANASh

couples through
p-n interaction
proton+neutron energies and densities

TRIUMF ab initio workshop Feb 28, 2023

TRIUMF ab initio workshop Feb 28, 2023

TRIUMF ab initio workshop Feb 28, 2023

TRIUMF ab initio workshop Feb 28, 2023

We can also compute EM and weak transitions

TRIUMF ab initio workshop Feb 28, 2023

We can also compute EM and weak transitions

TRIUMF ab initio workshop Feb 28, 2023

We can also compute EM and weak transitions

TRIUMF ab initio workshop Feb 28, 2023

TRIUMF ab initio workshop Feb 28, 2023

We can also compute EM and weak transitions

TRIUMF ab initio workshop Feb 28, 2023
'Aspirational' calculation: ${ }^{129} \mathrm{Cs}$ in $50-82$ space (force from Nowacki) full space dimension: 50 billion!

State iITY

'Aspirational' calculation: ${ }^{130} \mathrm{Ba}$ in 50-82 space (force from Nowacki) full space dimension: 200 billion!

TRIUMF ab initio workshop Feb 28, 2023

Moving forward

We (mostly Oliver Gorton) are working to further improve parallelization, to speed-up applications.

Moving forward

Can we use the statistical behavior to improve extrapolations/convergence?

Moving forward

Can we use the statistical behavior to improve extrapolations/convergence?

Moving forward

Can we apply to the no-core shell model?

Back to the chart of the nuclides...

TRIUMF ab initio workshop Feb 28, 2023

The Samarium and Neodymium isotope chains in particular are a good test, as the spectra change rapidly from from vibrational to rotational

$$
\mathrm{N}=126
$$

I use an interaction from Gilbreath et al, PRC 97, 014315 (2018), which uses the 'Shell-model Monte Carlo’ to investigate changes in deformation. The SMMC can handle huge spaces, but
-- is better for thermal properties rather than individual energies
-- requires a 'sign-problem-free' multipole-multipole + pairing force

> I can use a more general force, but this force is approximately correct for this mass region (but not guaranteed to fully reproduce the spectra...)

I use an interaction from Gilbreath et al, PRC 97, 014315 (2018), which uses the 'Shell-model Monte Carlo’ to investigate changes in deformation. The SMMC can handle huge spaces, but
-- is better for thermal properties rather than individual energies
-- requires a 'sign-problem-free' multipole-multipole + pairing force

Single-particle orbits

Single-particle orbits

But for naïve application of PANASh, this space is a little too large!
${ }^{148}$ Sm:
12 valence protons, dim = 150M 16 valence neutrons, dim $=800 \mathrm{M}$ (est)

Note: BIGSTICK code less efficient for single-species calculations

What about other approaches?

-- projected generator coordinate - cf B. Bally's talk Wed afternoon (projected Hartree-Fock isn't a bad starting point:

Lauber, Frye, and Johnson, J. Phys. G. 48, 095107 (2021).)

Could also do an energy truncation on the basis:
Horoi, Brown, and Zelevinsky, PRC 50, R2274(R) (1994)

