Ab initio exploration of ${ }^{12} \mathrm{Be}$

Anna E. McCoy
TRIUMF, Vancouver

Feb. 28, 2023

Characteristics of ${ }^{12} \mathrm{Be}$

- Breakdown of the $N=8$ shell closure Intruder ground state
- 2α dumbell orbited by neutrons
- Shape isomer

Outline

No-core shell model predictions for ${ }^{12} \mathrm{Be}$

- Rotational bands
- Level crossings and two-state mixing
- Shape observables
- E2 and E0 transitions
- Detangling the mixing problem
- Revisit shape observables
(a) σ-orbit

(b) π-orbit

${ }^{12} \mathrm{Be}$ Spectrum

7.2	(2 ${ }^{+}$)
6.275 5724- $\left.4^{+}{ }^{+}{ }^{+} 3^{-}\right)-$	
4.580-4.412-(20) $2^{-}\left(2^{+}, 3^{-}\right)$	
$2^{2.715}{ }^{2.251-0}{ }^{+}$	$1-$
$2.109{ }^{\text {e }}$	$2^{+} ; 2$
${ }^{12} \mathrm{Be}$	

Level scheme: https://nucldata.tunl.duke.edu/

${ }^{12}$ Be Rotational bands

Characterized by rotation of intrinsic state $\left|\phi_{K}\right\rangle$ by Euler angles $\vartheta \quad(J=K, K+1, \ldots)$

$$
\left|\psi_{J K M}\right\rangle \propto \int d \vartheta\left[\mathscr{D}_{M K}^{J}(\vartheta)\left|\phi_{K} ; \vartheta\right\rangle+(-)^{J+K} \mathscr{D}_{M-K}^{J}(\vartheta)\left|\phi_{\bar{K}} ; \vartheta\right\rangle\right]
$$

Rotational energy:

$$
E(J)=E_{0}+A[J(J+1)]
$$

Rotational $E 2$ transitions

$$
\begin{aligned}
& B\left(E 2 ; J_{i} \rightarrow J_{f}\right) \\
& \quad=\frac{5}{16 \pi}\left(J_{i} K ; 20 \mid J_{f} K\right)^{2}\left(e Q_{0}\right)^{2}
\end{aligned}
$$

${ }^{12}$ Be Band Evolution

${ }^{12} \mathrm{Be}$ Band Evolution

${ }^{12} \mathrm{Be}$ Band Evolution

${ }^{12}$ Be Band Evolution

${ }^{12}$ Be Band Evolution

${ }^{12}$ Be Rotational bands

Characterized by rotation of intrinsic state $\left|\phi_{K}\right\rangle$ by Euler angles $\vartheta \quad(J=K, K+1, \ldots)$

$$
\left|\psi_{J K M}\right\rangle \propto \int d \vartheta\left[\mathscr{D}_{M K}^{J}(\vartheta)\left|\phi_{K} ; \vartheta\right\rangle+(-)^{J+K} \mathscr{D}_{M-K}^{J}(\vartheta)\left|\phi_{\bar{K}} ; \vartheta\right\rangle\right]
$$

Rotational energy:

$$
E(J)=E_{0}+A[J(J+1)]
$$

Rotational E2 transitions

$$
\begin{aligned}
& B\left(E 2 ; J_{i} \rightarrow J_{f}\right) \\
& \quad=\frac{5}{16 \pi}\left(J_{i} K ; 20 \mid J_{f} K\right)^{2}\left(e Q_{0}\right)^{2}
\end{aligned}
$$

Characteristics of ${ }^{12} \mathrm{Be}$

- Breakdown of the $N=8$ shell closure Intruder ground state
- 2α dumbell orbited by neutrons
- Shape isomer

Outline

No-core shell model predictions for ${ }^{12} \mathrm{Be}$

- Rotational bands
- Level crossings and two-state mixing
- Shape observables
- E2 and E0 transitions
- Detangling the mixing problem
- Revisit shape observables
(a) σ-orbit

(b) π-orbit

${ }^{12}$ Be shape observables

${ }^{12} \mathrm{Be}$ shape observables

 Alliance

${ }^{12}$ Be shape observables

${ }^{12}$ Be shape observables

- r_{p} and β_{p} of $0_{2 \hbar \omega}^{+}$slightly larger than for $0_{0 \hbar \omega}^{+}$ $0_{2 \hbar \omega}^{+}$observables less converged
- r_{n} and β_{n} of $0_{2 \hbar \omega}^{+}$slightly larger than for $0_{0 \hbar \omega}^{+}$ $0_{2 \hbar \omega}^{+}$observables less converged (maybe)
$-r_{p}<r_{n}$
$-\beta_{p}>\beta_{n}$
To what extent are calculated observables impacted by transient mixing?
(a) σ-orbit
$+\stackrel{\alpha}{\bigcirc}-\stackrel{\alpha}{\bigcirc}+$
(b) π-orbit

${ }^{12}$ Be transitions

Do not expect inter-band transitions between bands with very different shape.

[^0]

${ }^{12}$ Be transitions

${ }^{12}$ Be transitions

Two state mixing

$$
H_{\text {mix }}=\underbrace{\left(\begin{array}{cc}
E_{1} & v \\
v & E_{2}
\end{array}\right)}_{\text {mixing Hamiltonian }} \rightarrow \underbrace{\binom{E_{1}^{\prime}}{E_{2}^{\prime}}}_{\text {"mixed" }}=\underbrace{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)}_{\text {mixing matrix }} \underbrace{\binom{E_{1}}{E_{2}}}_{\text {"unmixed" }}
$$

- Mixing angle θ depends on mixing matrix element v and $\Delta E=E_{1}-E_{2}$
- Get "unmixed" energy from $E(J)=E_{0}+A[J(J+1)]$

Mixing matrix element

$$
H=\left(\begin{array}{cc}
E_{1} & v \\
v & E_{2}
\end{array}\right)
$$

Mixing angle

$$
\binom{E_{1}^{\prime}}{E_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{E_{1}}{E_{2}}
$$

Mixing angle

$$
\binom{E_{1}^{\prime}}{E_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{E_{1}}{E_{2}}
$$

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Unmixed ${ }^{12} \mathrm{Be}$ shape observables

Unmixed ${ }^{12}$ Be shape observables

Unmixed ${ }^{12}$ Be shape observables

Shape summary

- Predictions for radii r and deformation β indicate for both 0^{+}states:
- Neutron radius is larger than proton radius and still growing
- Protons are more deformed than neutrons Approaching convergence
- Radii of 0_{1}^{+}larger than radii 0_{2}^{+}(and is less converged)
-0_{1}^{+}has larger radii and is more deformed than 0_{2}^{+}
- Consistent with 2α dumbbell surrounded by neutron cloud

Probing underlying symmetries

- Ab initio calculations provides access to underlying wave functions of the collective states
- Using the "Lanczos trick" we can decompose the wave functions according to different symmetries
C. W. Johnson. Phys. Rev. C 91 (2015) 034313.
- Elliott's $\operatorname{SU}(3)$: In limit of large quantum numbers, labels (λ, μ) are associated with deformation parameters
O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3

$$
\begin{aligned}
& \beta^{2} \propto r^{-4}\left(\lambda^{2}+\lambda \mu+\mu^{2}+3 \lambda+3 \mu+3\right) \\
& \gamma=\tan ^{-1}[\sqrt{3}(\mu+1) /(2 \lambda+\mu+3)]
\end{aligned}
$$

$\mathrm{SU}(3)$ generators

$Q_{2 M} \quad$ Algebraic quadrupole
 $L_{1 M} \quad$ Orbital angular momentum

Elliott U(3)

SU(3) symmetry of a configuration

- $\mathrm{SU}(3)$ coupling particles within major shells Each particle has $S U(3)$ symmetry $(N, 0), N=2 n+\ell$.
- $\mathrm{SU}(3)$ coupling successive shells
- $\mathrm{SU}(3)$ coupling protons and neutrons
- Different configurations lead to different $N_{\text {ex }}(\lambda, \mu) S$
- Lowest energies correspond to most deformed intrinsic state $\langle Q \cdot Q\rangle / r^{4} \propto \beta^{2}$

$$
\begin{aligned}
H & \propto-Q \cdot Q+E\left(N_{\mathrm{ex}}\right) \\
& =-6 C_{\mathrm{SU}(3)}(\lambda, \mu)+3 \mathbf{L}^{2}+E\left(N_{\mathrm{ex}}\right)
\end{aligned}
$$

Elliott rotational bands: ${ }^{12} \mathrm{Be}$

$$
H \propto-Q \cdot Q=-6 C_{\mathrm{SU}(3)}+3 \mathbf{L}^{2}+E\left(N_{\mathrm{ex}}\right)
$$

$N_{\mathrm{ex}}(\lambda, \mu)$	S	\Rightarrow	$\left\langle C_{\mathrm{SU}(3)}\right\rangle$
$0(0,1)$	1	\Rightarrow	4
$0(2,0)$	0	\Rightarrow	10
\cdots			
$2(4,3)$	0,1	\Rightarrow	58
$2(7,0)$	1	\Rightarrow	70
$2(6,2)$	0	\Rightarrow	76

Decomposition by Elliott U(3)

Decomposition by Elliott U(3)

Decomposition by Elliott U(3)

Unmixed states have very different $\mathrm{SU}(3)$ fingerprint (different "shapes")

Acknowledgements

In collaboration with...

Mark Caprio
University of Notre Dame
Pieter Maris
Iowa State University

Summary

- Ab initio NCSM with Daejeon16 predicts an intruder ground state
- 0^{+}and 2^{+}states mix as energies cross. Making analysis of convergence hard!
- State mixing appears to be well modeled by two-state mixing problem.
- States do not fully un-mix (non-zero interband $E 0$ and $E 2$ transitions).
- Predictions for radii r and deformation β indicate for 0^{+}states:
- Neutron radius is larger than proton radius
- Protons are more deformed than neutrons
- 0_{1}^{+}has larger radius and is more deformed than 0_{2}^{+}
- 0_{1}^{+}and 0_{2}^{+}states have very different $\mathrm{SU}(3)$ (different "shapes")
- Next steps:
- Known exp. energies + mixing matrix element v, fixes "physical" mixing angle
- Use physical mixing angle to re-mix observables (or rather ratios of observables)

[^0]: Level scheme: https://nucldata.tunl.duke.edu/

