Ab initio exploration of ¹²Be

Anna E. McCoy TRIUMF, Vancouver

Feb. 28, 2023

Characteristics of ¹²Be

- Breakdown of the N = 8 shell closure Intruder ground state
- -2α dumbell orbited by neutrons
- Shape isomer

Outline

No-core shell model predictions for ¹²Be

- Rotational bands
- Level crossings and two-state mixing
- Shape observables
- E2 and E0 transitions
- Detangling the mixing problem
- Revisit shape observables

(a) σ -orbit

(b) π -orbit

Figure: Y. Kanada-En'yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003).

¹²Be Spectrum

Level scheme: https://nucldata.tunl.duke.edu/

¹²Be Rotational bands

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...) $|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathcal{D}^J_{MK}(\vartheta) |\phi_K; \vartheta\rangle + (-)^{J+K} \mathcal{D}^J_{M-K}(\vartheta) |\phi_{\bar{K}}; \vartheta\rangle \Big]$

Rotational energy:

$$E(J) = E_0 + A[J(J+1)]$$

Rotational E2 transitions

$$B(E2; J_i \to J_f) = \frac{5}{16\pi} (J_i K; 20 | J_f K)^2 (eQ_0)^2$$

¹²Be Rotational bands

Characterized by rotation of intrinsic state $|\phi_K\rangle$ by Euler angles ϑ (J = K, K + 1, ...) $|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathcal{D}^J_{MK}(\vartheta) |\phi_K; \vartheta\rangle + (-)^{J+K} \mathcal{D}^J_{M-K}(\vartheta) |\phi_{\bar{K}}; \vartheta\rangle \Big]$

Rotational energy:

 $E(J) = E_0 + A[J(J+1)]$

Rotational E2 transitions

 $B(E2; J_i \to J_f) = \frac{5}{16\pi} (J_i K; 20 | J_f K)^2 (eQ_0)^2$

Characteristics of ¹²Be

- Breakdown of the N = 8 shell closure Intruder ground state
- -2α dumbell orbited by neutrons
- Shape isomer

Outline

No-core shell model predictions for ¹²Be

- Rotational bands
- Level crossings and two-state mixing
- Shape observables
- E2 and E0 transitions
- Detangling the mixing problem
- Revisit shape observables

(a) σ -orbit

(b) π -orbit

Figure: Y. Kanada-En'yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003).

- r_p and β_p of $0^+_{2\hbar\omega}$ slightly larger than for $0^+_{0\hbar\omega}$ $0^+_{2\hbar\omega}$ observables less converged
- r_n and β_n of $0^+_{2\hbar\omega}$ slightly larger than for $0^+_{0\hbar\omega}$ $0^+_{2\hbar\omega}$ observables less converged (maybe)

$$-r_p < r_n$$

 $-\beta_p > \beta_n$

To what extent are calculated observables impacted by transient mixing?

(a) σ -orbit

(b) π -orbit

Figure: Y. Kanada-En'yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003).

¹²Be transitions

Do not expect inter-band transitions between bands with very different shape.

¹²Be transitions

¹²Be transitions

Two state mixing

- Mixing angle θ depends on mixing matrix element v and $\Delta E = E_1 - E_2$

Mixing matrix element

$$H = \left(\begin{array}{cc} E_1 & v \\ v & E_2 \end{array}\right)$$

 $\theta \; (\deg)$

Mixing angle

$$\begin{pmatrix} E'_1 \\ E'_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Mixed vs. unmixed

Unmixed ¹²Be shape observables

Unmixed ¹²Be shape observables

Unmixed ¹²Be shape observables

Shape summary

- Predictions for radii r and deformation β indicate for both 0⁺ states:
 - Neutron radius is larger than proton radius and still growing
 - Protons are more deformed than neutrons Approaching convergence
- Radii of 0_1^+ larger than radii 0_2^+ (and is less converged)
- -0_1^+ has larger radii and is more deformed than 0_2^+
- Consistent with 2α dumbbell surrounded by neutron cloud

Probing underlying symmetries

- Ab initio calculations provides access to underlying wave functions of the collective states
- Using the "Lanczos trick" we can decompose the wave functions according to different symmetries

C. W. Johnson. Phys. Rev. C 91 (2015) 034313.

- Elliott's SU(3): In limit of large quantum numbers, labels (λ, μ) are associated with deformation parameters

O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3

$$\beta^{2} \propto r^{-4} (\lambda^{2} + \lambda \mu + \mu^{2} + 3\lambda + 3\mu + 3)$$

$$\gamma = \tan^{-1} [\sqrt{3}(\mu + 1)/(2\lambda + \mu + 3)]$$

SU(3) generators

- Q_{2M} Algebraic quadrupole
- *L*_{1M} Orbital angular momentum

Elliott U(3)

SU(3) symmetry of a configuration

- SU(3) coupling particles within major shells Each particle has SU(3)symmetry $(N, 0), N = 2n + \ell$.
- SU(3) coupling successive shells
- SU(3) coupling protons and neutrons
- Different configurations lead to different $N_{\text{ex}}(\lambda,\mu)S$
- Lowest energies correspond to most deformed intrinsic state $\langle Q \cdot Q \rangle / r^4 \propto \beta^2$

 $H \propto -Q \cdot Q + E(N_{\text{ex}})$ $= -6C_{\text{SU}(3)}(\lambda, \mu) + 3L^2 + E(N_{\text{ex}})$

Elliott rotational bands: ¹²Be

Decomposition by Elliott U(3)

Decomposition by Elliott U(3)

Decomposition by Elliott U(3)

Unmixed states have very different SU(3) fingerprint (different "shapes")

Acknowledgements

In collaboration with...

Mark Caprio University of Notre Dame

Pieter Maris Iowa State University

Theory Alliance

Summary

- Ab initio NCSM with Daejeon16 predicts an intruder ground state
- 0⁺ and 2⁺ states mix as energies cross. *Making analysis of convergence hard!*
 - State mixing appears to be well modeled by two-state mixing problem.
 - States do not fully un-mix (non-zero interband E0 and E2 transitions).
- Predictions for radii r and deformation β indicate for 0⁺ states:
 - Neutron radius is larger than proton radius
 - Protons are more deformed than neutrons
 - 0⁺₁ has larger radius and is more deformed than 0⁺₂
- 0⁺₁ and 0⁺₂ states have very different SU(3) (*different "shapes"*)
- Next steps:
 - Known exp. energies + mixing matrix element *v*, fixes "physical" mixing angle
 - Use physical mixing angle to re-mix observables (or rather ratios of observables)