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Characteristics of 12Be

– Breakdown of the N = 8 shell closure
Intruder ground state

– 2α dumbell orbited by neutrons

– Shape isomer

Outline
No-core shell model predictions for 12Be

– Rotational bands

– Level crossings and two-state mixing

– Shape observables

– E2 and E0 transitions

– Detangling the mixing problem

– Revisit shape observables

nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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FIG. 6. Density distributions of the single-particle wave func-
tions of the valence neutrons in the intrinsic wave functions of the
01

" , 03
" , 61

" , and 31
" states. The figures at the left (right) show the

densities regarding the positive-parity components of the first (sec-
ond) highest neutron orbits. The value P" in each orbit indicates
the squared amplitude of the contained positive-parity component.
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12Be Spectrum
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12Be Rotational bands
Characterized by rotation of intrinsic state |ϕK⟩ by Euler angles ϑ (J = K,K +1, . . .)

|ψJKM⟩ ∝

∫
dϑ

[
DJ

MK(ϑ)|ϕK ;ϑ⟩ + (−)J+KDJ
M−K(ϑ)|ϕK̄ ;ϑ⟩

]

Rotational energy:

E(J) = E0+A
[
J(J+1)

]
Rotational E2 transitions

B(E2;Ji→ Jf )

=
5

16π
(JiK;20|Jf K)2(eQ0)2
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12Be Band Evolution
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12Be Band Evolution

0 1 2 3 4 5 6 7 8

J

0

5

10

15

20

E
x

(M
eV

)

12Be
+

Daejeon16
h̄ω = 15.0

Nmax = 8

0.25

0.50

0.75

1.00

P
(N

ex
)

2h̄ω0+ 2+ 4+

0 2 4 6

Nex

0.25

0.50

0.75

1.00

P
(N

ex
)

0h̄ω0+ 2+



12Be Band Evolution
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12Be Band Evolution
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12Be Band Evolution
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nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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Figure: Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68,
014319 (2003).



12Be shape observables
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12Be shape observables

– rp and βp of 0+2ℏω slightly larger than for 0+0ℏω
0+2ℏω observables less converged

– rn and βn of 0+2ℏω slightly larger than for 0+0ℏω
0+2ℏω observables less converged (maybe)

– rp < rn

– βp > βn

nents. The K!!02
" band is approximately described by 0"#

configurations, while the K!!01
" , 03

" , 21
" bands are domi-

nated by 2"# configurations with two neutrons in sd-like
orbits. On the other hand, the main components of the K!

!11
# band are 1"# configurations.
The idea of molecular orbits surrounding a 2$ core is

helpful to understand the roles of the valence neutrons in
neutron-rich Be isotopes. The molecular orbits in Be isotopes
were suggested in a study of 9Be with a 2$"n cluster model
%24&. They assumed ' orbits and ! orbits which are made
from linear combinations of the p orbits around the $ cores
(see Fig. 5). This idea was applied to neutron-rich Be iso-
topes by Seya et al. a long time ago %1&. In the 1990s Oertzen
et al. %3,32& revived this kind of research to understand the
rotational bands of neutron-rich Be isotopes, and Itagaki
et al. %8,9& described the structures of the low-lying states of
10Be and 12Be by assuming 2$ core and valence neutrons in
the molecular orbits. The formation of the 2$ and valence
neutron structures in neutron-rich Be isotopes was first guar-
anteed theoretically by the AMD calculation %2,5–7,11&,
where the existence of any clusters or molecular orbits was
not assumed. In these AMD studies, the viewpoint of the
molecular orbit was found to be useful to understand the
cluster development in 10Be and 11Be. Therefore, it is an
interesting problem whether the states of 12Be can be de-
scribed by the molecular orbits.
In the present results for 12Be, we find a new kind of

molecular orbit besides the suggested ! orbit and ' orbit. In
the positive-parity orbits of the valence neutrons in 12Be,
two kinds of molecular orbits appear, both of which are as-
sociated with sd orbits. The first one is the ' orbit %Fig.
5(a)&, while the second one is quite a new molecular orbit,
shown in Fig. 5(c). This orbit is the other positive-parity
orbit made from a linear combination of the p orbits around
the $ cores. As shown in Fig. 5(c), the combined p orbits in
this orbit are perpendicular to those in the ' orbit. We call
this new positive-parity orbit a *! orbit in the present paper,
although it has (+,)!(01) symmetry in the SU3 limit,
which is perpendicular to the so-called *-orbit in the field of
the molecular physics. In the case of 12Be, the negative-
parity orbit of the neutron surrounding 2$ does not neces-
sarily correspond to the pure molecular ! orbit, because the
p3/2-shell closure cannot be described by simple ! orbits.
Therefore, in the following discussions, we concentrate on

the positive-parity orbits of the valence neutrons associated
with the molecular ' orbits and *! orbits.
Figure 6 shows the density distributions of the single-

particle wave functions of the first and second highest neu-
tron orbits. In the low-spin cluster states, the positive-parity
orbits of the valence neutrons can be well associated with the
two types of the molecular orbits ' and *!. In the 01

" state,
two valence neutrons with up and down spins occupy the
'-like orbits, which have two nodes along the longitudinal
axis. In the 03

" state, which is dominated by the other 2"#
configurations, the two neutrons occupy *!-like orbits. It is
very surprising that the developed 6He"6He cluster struc-
ture in the 03

" state is understood by the new molecular *!
orbits. It occurs when two deformed 6He clusters are at-
tached in parallel. In the 02

" state, all of the four valence
neutrons are in the negative-parity orbits. Comparing the en-
ergies of the 03

" state with those of the 01
" and 02

" states, the
*! orbit is the highest among the molecular orbits ' , ! , and
*!.
The molecular ' orbit is one of the reasons for the de-

formed ground state of 12Be with the 2"# configurations,
which is lower than the closed neutron-shell state. Since Be
nuclei prefer prolate deformations because of the 2$-cluster
core, the ' orbit gains kinetic energy in the developed cluster
system. In pioneering studies %9,11&, the importance of the '
orbit in the ground states of 11Be and 12Be were discussed in
relation to a vanishing of the magic number. Thus, the neu-
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FIG. 5. Sketches for the molecular orbits, (a) ' orbits, (b) !
orbits, and (c) *! orbits surrounding 2$ core. These molecular or-
bits are explained by linear combinations of the p-shell orbits
around the $ cores.
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Figure: Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68,
014319 (2003).

To what extent are calculated
observables impacted by transient
mixing?



12Be transitions
Do not expect inter-band transitions between bands with very different shape.
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12Be transitions
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12Be transitions
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Two state mixing

Hmix =

(
E1 v
v E2

)
︸        ︷︷        ︸

mixing Hamiltonian

→

(
E′1
E′2

)
︸ ︷︷ ︸
“mixed"

=

(
cosθ sinθ
−sinθ cosθ

)
︸                ︷︷                ︸

mixing matrix

(
E1
E2

)
︸ ︷︷ ︸

“unmixed"

– Mixing angle θ depends on mixing matrix element v and ∆E = E1−E2

– Get “unmixed" energy from
E(J) = E0+A[J(J+1)]
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Mixing matrix element

H =
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Mixing angle(
E′1
E′2

)
=
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cosθ sinθ
−sinθ cosθ
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Mixed vs. unmixed

– Energies

– radii and E0

– B(E2) and deformation

– Ratios of observables
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Mixed vs. unmixed
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Mixed vs. unmixed
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Mixed vs. unmixed
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Mixed vs. unmixed
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Unmixed 12Be shape observables
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Unmixed 12Be shape observables
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Unmixed 12Be shape observables
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Shape summary

– Predictions for radii r and deformation β indicate for both 0+ states:
– Neutron radius is larger than proton radius and still growing
– Protons are more deformed than neutrons Approaching convergence

– Radii of 0+1 larger than radii 0+2 (and is less converged)

– 0+1 has larger radii and is more deformed than 0+2

– Consistent with 2α dumbbell surrounded by neutron cloud



Probing underlying symmetries

– Ab initio calculations provides access to underlying wave
functions of the collective states

– Using the “Lanczos trick” we can decompose the wave
functions according to different symmetries
C. W. Johnson. Phys. Rev. C 91 (2015) 034313.

– Elliott’s SU(3): In limit of large quantum numbers, labels
(λ,µ) are associated with deformation parameters
O. Castanos, J. P. Draayer, Y. Leschber, Z. Phys. A 329 (1988) 3

β2 ∝ r−4(λ2+λµ+µ2+3λ+3µ+3)

γ = tan−1[
√

3(µ+1)/(2λ+µ+3)]

J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101 Topical Review

Figure 2. A traditional (βγ ) plot, where β (β ! 0) is the radius vector and γ (0 " γ " π/3)
is the azimuthal angle, demonstrates the relationship between the collective model shape variables
(βγ ) and the SU(3) irrep labels (λµ).

a prolate shape, irreps with λ = 0 correspond to an oblate geometry, and irreps with λ = µ

describe a maximally asymmetric shape. A spherical nucleus is described by the (00) irrep.
In short, the SU(3) classification of many-body states allows for a geometrical analysis

of the eigenstates of a nuclear system via relations (54) and (55) and hence gives insight into
phenomena associated with nuclear deformation.

5. Symplectic shell model

The symplectic model [10–12] is a microscopic algebraic model of nuclear collective motion
that includes monopole and quadrupole collective vibrations as well as vorticity degrees of
freedom for a description of rotational dynamics in a continuous range from irrotational to
rigid rotor flows. It can be regarded as both a microscopic realization of the successful
phenomenological Bohr–Mottelson–Frankfurt collective model and a multi-h̄% extension of
the Elliott SU(3) model.

While the NCSM divides the many-nucleon Hilbert space into ‘horizontal’ layers of
Nh̄% subspaces, the symplectic model divides it into ‘vertical’ slices of Sp(3, R) irreducible
representations, which is schematically illustrated in figure 4. The symplectic model thus
allows one to restrict a model space to vertical slices that admit the most important modes of
nuclear collective dynamics.

The symplectic model is based on the 21-dimensional algebra sp(3, R) and has a very
rich group structure (see figure 3). In particular, there are two important subgroup chains
that unveil the physical content of the symplectic model: the shell model subgroup chain
associated with the Elliott SU(3) group and the collective model chain related to the general
collective motion GCM(3) group. The intersection of these chains is the group of rotations
SO(3).
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Unmixed states have very different SU(3) fingerprint (different “shapes")
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Summary

– Ab initio NCSM with Daejeon16 predicts an intruder ground state
– 0+ and 2+ states mix as energies cross. Making analysis of convergence hard!

– State mixing appears to be well modeled by two-state mixing problem.
– States do not fully un-mix (non-zero interband E0 and E2 transitions).

– Predictions for radii r and deformation β indicate for 0+ states:
– Neutron radius is larger than proton radius
– Protons are more deformed than neutrons
– 0+1 has larger radius and is more deformed than 0+2

– 0+1 and 0+2 states have very different SU(3) (different “shapes")
– Next steps:

– Known exp. energies + mixing matrix element v, fixes “physical" mixing angle
– Use physical mixing angle to re-mix observables (or rather ratios of observables)


