

THE UNIVERSITY OF BRITISH COLUMBIA

Towards reliable nuclear matrix elements for neutrinoless double beta decay

Antoine Belley

PAINT Workshop 2023

Collaborators: Jack Pitcher, Takayuki Miyagi, Ragnar Stroberg, Jason Holt

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Double beta decays

∂TRIUMF

Second order order weak process

Only possible when single beta decay is energetically forbidden (or strongly disadvantaged)

3

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p \\ e \\ W & e \\ p \\ M & e \\ n \longrightarrow p \\ p$
Half-life Formula	$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} M^{2\nu} ^2$	$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$
NME Formula	$M^{2\nu} pprox M_{GT}^{2\nu}$	$M^{0\nu} = M^{0\nu}_{GT} - \left(\frac{g_v}{g_a}\right)^2 M^{0\nu}_F + M^{0\nu}_T - 2g_{\nu\nu}M^{0\nu}_{CT}$
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p \\ e \\ W & e \\ n \longrightarrow p \\ p$
Half-life	$[T^{2\nu}]^{-1} - C^{2\nu} M^{2\nu}^{2\nu}$	$[\pi 0u]_{-1} = (0u)_{2} \left(\langle m_{\beta\beta} \rangle \right)^{2}$
Formula	$\begin{bmatrix} I \\ 1/2 \end{bmatrix} = G \begin{bmatrix} M \\ M \end{bmatrix}$	$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{(mp)}{m_e}\right)$
NME	$M^{2 u} \sim M^{2 u}$	$\Lambda \sqrt{2\nu} = \sqrt{2\nu} (g_v) 2 \sqrt{2\nu} + \sqrt{2\nu} 2 q \sqrt{2\nu}$
Formula	$NI \sim M_{GT}$	$M^{*} = M_{GT} - \left(\frac{g_{a}}{g_{a}}\right) M_{F}^{*} + M_{T}^{*} - 2g_{\nu\nu}M_{CT}^{*}$
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p \\ e \\ W & e \\ p \\ M & e \\ n \longrightarrow p \\ p$
Half-life Formula	$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} M^{2\nu} ^2$	$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m}\right)^2$
Formula	$M^{2\nu} \approx M_{GT}^{2\nu}$	$M^{0\nu} = M^{0\nu}_{GT} - (\frac{g_v}{g_a})^2 M^{0\nu}_F + M^{0\nu}_T - 2g_{\nu\nu} M^{0\nu}_{CT}$
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

Discovery, accelerated

RIUMF

Status of 0vββ-decay Matrix Elements

5

Current calculations from phenomenological models have large spread in results.

Compiled values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, arXiv:2008.13249 (2020); Brase et al, arXiv:2108.11805 (2021)

RIUMF

Status of 0vββ-decay Matrix Elements

5

Current calculations from phenomenological models have large spread in results.

Compiled values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, arXiv:2008.13249 (2020); Brase et al, arXiv:2108.11805 (2021)

Ab initio nuclear theory

7

Expansion order by order of the nuclear forces

Reproduces symmetries of low-energy QCD using nucleons as fields and pions as force carriers.

Machleidt and Entem, Phys. Rep., vol.503, no.1, pp.1–75 (2011)

VS-IMSRG

8

Valence-Space In Medium Similarity Renormalization Group

Charlie Payne, Master's Thesis, UBC (2018)

Discovery, accelerated

VS-IMSRG

8

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerate

VS-IMSRG

8

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

Results

Ab Initio 0vββ Decay: 48Ca, 76Ge and 82Se

Things to add: valence space variation, two-body currents, IMSRG(3), ...

Belley, et al., PRL126.042502 **Belley**, et al., in prep

Ab Initio 0vββ **Decay: The contact term**

Belley, et al., in prep

11

∂TRIUMF

Ab Initio 0vββ Decay: ¹³⁰Te, ¹³⁶Xe

¹³⁰Te, ¹³⁶Xe major players in global searches with SNO+, CUORE and nEXO

Increased E_{3max} capabilities allow first converged ab initio calculations [EM1.8/2.0, Δ_{GO} , N3LO_{LNL}] ¹²

Belley, et al., in prep

0vββ-decay Matrix Elements: The new picture

Belley, et al., in prep

13

CRIUMF Ab Initio 0vββ Decay: Effect on experimental limits

CRIUMF Ab Initio 0vββ Decay: Effect on experimental limits

15

CRIUMF Ab Initio 0vββ Decay: Effect on experimental limits

15

- The many-body method (VS-IMSRG)
- The χ -EFT interaction
- The operators

- The many-body method (VS-IMSRG)
- The χ -EFT interaction
- The operators

- The many-body method (VS-IMSRG)
- The χ -EFT interaction
- The operators

TRIUMF Benchmarking 0vββ Decay in Light Nuclei: Summary

Benchmark with other ab initio method for fictitious decays in light nuclei

Yao, Belley, et al., PhysRevC.103.014315

17

Reasonable to good agreement in all cases

- The many-body method (VS-IMSRG)
- The χ -EFT interaction
- The operators

Correlation between observables

In ⁷⁶Ge:

Belley et al., arXiv:2210.05809

Correlation between observables

In ⁷⁶Ge:

Belley et al., arXiv:2210.05809

Correlation between observables

In ⁷⁶Ge:

Belley et al., arXiv:2210.05809

Global sensitivity analysis

20

Global sensitivity analysis can probe how dependent the final result is to each input but require thousands of samples in order to do so.

Global sensitivity analysis

21

Global sensitivity analysis can probe how dependent the final result is to each input but require thousands of samples in order to do so.

Need emulators to speed up calculations.

Using Gaussian Process as an emulator

- Multi-output Multi-Fidelity Gaussian Process (MMGP) can be used to probe LEC space.
- Multi-Tasks Gaussian Process: Uses multiple correlated outputs from same inputs by defining the kernel as $k_{inputs} \otimes k_{outputs}$. This allows us to increase the number of data points without needing to do more expansive calculations.
- Multi-Fidelity Gaussian Process: Uses few data points of high fidelity (full IMSRG calculations) and many data points of low fidelity (e.g. Hartree-Fock results, lower e_{max}). The difference function is fitted by a Gaussian process in order to predict the value of full calculations using the low fidelity data points.

22

[1] Q. Lin, J. Hu, Q. Zhou, Y. Cheng, Z. Hu, I. Couckuyt, and T. Dhaene, Knowledge-Based Systems 227, 107151 (2021).

The MM-DGP algorithm

23

- When the relation between low-fidelity and highfidelity data is complicated, the simple multifidelity approach does not produce good results.
- Deep gaussian process [1] link multiple gaussian processes inside a neural network to improve results.
- This can be used to model the difference function between the low-fidelity and high-fidelity by including outputs of the previous fidelity as an input of higher fidelity.
- This was developed for single-output gaussian processes and we have adapted it for multioutput case, creating the MM-DGP: Multi-output Multi-fidelity Deep Gaussian Process.
- Even if we use the same number of low- and high-fidelity data, using multiple-fidelities still improves the fit!

The MM-DGP algorithm: Energies

Using Δ -full chiral EFT interactions at N2LO:

Belley, Pitcher et al. in prep.

The MM-DGP algorithm: 0νββ NMEs

Using Δ -full chiral EFT interactions at N2LO:

Belley, Pitcher et al. in prep.

The MM-DGP algorithm: GSA

26

Summary...

- 1) Computed first ever ab initio NMEs of isotopes of experimental interest, which is a first step towards computing NME with reliable theoretical uncertainties.
- 2) Computed NME with multiple interactions for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹³⁰Te and ¹³⁶Xe.
- 3) Study of effect of the contact term on the NMEs.
- 4) Studied correlations between multiple operators using a wide range of interactions.
- 5) Developed an emulator for the VS-IMSRG based on Gaussian processes.

... and outlook

- 1) Include finite momentum 2-body currents and other higher order effects.
- 2) Large scale ab initio uncertainty analysis with other methods for "final" NMEs.
- 3) Study other exotic mechanism proposed for $0\nu\beta\beta$.

27

Questions?

abelley@triumf.ca

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

(under closure approximation)

$$M^{0\nu}_{\alpha} = \langle 0^+_f | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0^+_i \rangle$$

$$\begin{split} M_L^{0\nu} &= M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu} \\ M_\alpha^{0\nu} &= \langle 0_f^+ | V_\alpha(q) S_\alpha(q) \tau_1^+ \tau_2^+ | 0_i^+ \rangle \\ V_\alpha(q) &= \frac{R_{Nucl}}{2\pi^2} \frac{h_\alpha(q)}{q(q + E_{cl})} \end{split}$$
 Scalar potential

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_{\alpha}^{0\nu} = \langle 0_f^+ | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0_i^+ \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q + E_{cl})} \longrightarrow \text{Closure energy}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_{\alpha}^{0\nu} = \langle 0_f^+ | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0_i^+ \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q + E_{cl})}$$
 Neutrino Potential

$$\begin{split} h_F(q) &= \frac{g_V^2(q)}{g_V^2} \\ h_{GT}(q) &= \frac{1}{g_A^2} \left[g_A^2(q) - \frac{g_A(q)g_P(q)q^2}{3m_N} + \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{6m_N^2} \right] \\ h_T(q) &= \frac{1}{g_A^2} \left[\frac{g_A(q)g_P(q)q^2}{3m_N} - \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{12m_N^2} \right]. \end{split}$$

Discovery, accelerated

$$\begin{split} M_{L}^{0\nu} &= M_{GT}^{0\nu} - \left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{0\nu} + M_{T}^{0\nu} \\ M_{\alpha}^{0\nu} &= \langle 0_{f}^{+} | V_{\alpha}(q) S_{\alpha}(q) \tau_{1}^{+} \tau_{2}^{+} | 0_{i}^{+} \rangle \\ V_{\alpha}(q) &= \frac{R_{Nucl}}{2\pi^{2}} \frac{h_{\alpha}(q)}{q(q + E_{cl})} \end{split}$$
 Operator acting on spin
$$\begin{split} h_{F}(q) &= \frac{g_{V}^{2}(q)}{g_{V}^{2}} \\ h_{GT}(q) &= \frac{1}{g_{A}^{2}} \left[g_{A}^{2}(q) - \frac{g_{A}(q)g_{F}(q)q^{2}}{3m_{N}} + \frac{g_{F}^{2}(q)q^{4}}{12m_{N}^{2}} + \frac{g_{M}^{2}(q)q^{2}}{6m_{N}^{2}} \right] \\ h_{T}(q) &= \frac{1}{g_{A}^{2}} \left[\frac{g_{A}(q)g_{F}(q)q^{2}}{3m_{N}} - \frac{g_{F}^{2}(q)q^{4}}{12m_{N}^{2}} + \frac{g_{M}^{2}(q)q^{2}}{12m_{N}^{2}} \right]. \end{split} \\ \end{split}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M^{0\nu}_{\alpha} = \langle 0^+_f | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0^+_i \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q+E_{cl})}$$

$$\begin{split} h_F(q) &= \frac{g_V^2(q)}{g_V^2} \\ h_{GT}(q) &= \frac{1}{g_A^2} \left[g_A^2(q) - \frac{g_A(q)g_P(q)q^2}{3m_N} + \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{6m_N^2} \right] \\ h_T(q) &= \frac{1}{g_A^2} \left[\frac{g_A(q)g_P(q)q^2}{3m_N} - \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{12m_N^2} \right]. \end{split}$$

$$\begin{split} S_F &= 1\\ S_{GT} &= \boldsymbol{\sigma_1} \cdot \boldsymbol{\sigma_2}\\ S_T &= -3[(\boldsymbol{\sigma_1} \cdot \hat{\boldsymbol{q}})(\boldsymbol{\sigma_2} \cdot \hat{\boldsymbol{q}}) - (\boldsymbol{\sigma_1} \cdot \boldsymbol{\sigma_2})] \,. \end{split}$$

scovery, celerated

Ŭ

Short-Range Matrix Elements

 $M_{S}^{0\nu} = -2g_{\nu\nu}M_{CT}^{0\nu}$

Short-Range Matrix Elements

 $-2g_{\nu\nu}M_{CT}^{0\nu}$

Unknown coupling constants.

Method by Cirigliano et al. (JHEP05(2021)289) allows to extract this coupling for ab initio method with 30% accuracy for each nuclear interaction

Short-Range Matrix Elements

Unknown coupling constants.

 $M_{S}^{0\nu} = -2g_{\nu\nu}M_{C}^{0\nu}$

Method by Cirigliano et al. (JHEP05(2021)289) allows to extract this coupling for ab initio method with 30% uncertainty for each nuclear interaction Contact operator regularized with non-local regulator matching the nuclear interaction used:

$$M_{CT}^{0\nu} = \langle 0_f^+ | \frac{R_{Nucl}}{8\pi^3} \left(\frac{m_N g_A^2}{4f_\pi^2} \right)^2 \exp(-(\frac{p}{\Lambda_{int}})^{2n_{int}}) \exp(-(\frac{p'}{\Lambda_{int}})^{2n_{int}}) | 0_i^+ \rangle$$

70

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \left[\sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}\right]$$

One-body kinetic energy $\hat{T}^{[1]}$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Two-body kinetic energy $\,\hat{T}^{[2]}$

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

NN forces

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

Considering the nuclear Hamiltonian:

 $\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_i^2}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_i \hat{p}_j\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$

scovery, celerated

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

We can rewrite the Hamiltonian in terms of normal ordered operators as:

$$\hat{H} = E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$

$$\hat{H} = E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$
$$E = \left(1 - \frac{1}{A}\right) \sum_a \langle a \mid \hat{T}^{[1]} \mid a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \mid \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \mid ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \mid \hat{V}^{[3]} \mid abc \rangle n_a n_b n_c$$

$$\begin{aligned} \hat{H} &= E + \sum_{ij} (\hat{f}_{ij}) a_i^{\dagger} a_j \} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k \} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l \} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \end{aligned}$$

$$\begin{split} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, kl \rangle + \sum_a \langle ija \,|\, \hat{V}^{[3]} \,|\, kla \rangle n_a \end{split}$$

Discovery, acceleratec

Discovery, accelerated

$$\begin{split} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, kl \rangle + \sum_a \langle ija \,|\, \hat{V}^{[3]} \,|\, kla \rangle n_a \end{split}$$

$$\begin{aligned} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a | \hat{T}^{[1]} | a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc | \hat{V}^{[3]} | abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i | \hat{T}^{[1]} | j \rangle + \sum_a \langle ia | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab | \hat{V}^{[3]} | jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | kl \rangle + \sum_a \langle ija | \hat{V}^{[3]} | kla \rangle n_a \end{aligned}$$

The VS-IMSRG

Choose generator in order to decouple the valence-space from the excluded space:

$$\eta = \sum_{ij} \eta_{ij} \{a_i^{\dagger} a_j\} + \sum_{ijkl} \eta_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\}$$

for $ij \in [pc, ov]$ and $ijkl \in [pp'cc', pp'vc, opvv']$ for c in the core, v in the valence-space, o outside the valence-space and p not in the core.

$$\eta_{ij} = \frac{1}{2} \arctan\left(\frac{2f_{ij}}{f_{ii} - f_{jj} + \Gamma_{ijij}}\right)$$
$$\eta_{ijkl} = \frac{1}{2} \arctan\left(\frac{2\Gamma_{ijkl}}{f_{ii} + f_{jj} - f_{kk} - f_{ll} + \Gamma_{ijij} + \Gamma_{klkl} - \Gamma_{ikik} - \Gamma_{ilil} - \Gamma_{jkjk} - \Gamma_{jljl}}\right)$$

