※TRIUMF

Ab initio studies on ordinary muon capture

Lotta Jokiniemi

Postdoc，Theory Department，TRIUMF
PAINT 2023 Workshop，TRIUMF，Vancouver

Arthur B．McDonald
Canadian Astroparticle Physics Research Institute

き TRIUMF

Outline

Introduction

VS-IMSRG Study on Muon Capture on ${ }^{24} \mathbf{M g}$

No-Core Shell-Model Studies on Muon Capture on Light Nuclei

Summary and Outlook

き TRIUMF

Ordinary Muon Capture

$$
\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)
$$

- A negatively charged muon can replace an electron in an atom, forming a muonic atom

き TRIUMF

Ordinary Muon Capture

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A negatively charged muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit

き TRIUMF

Ordinary Muon Capture

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A negatively charged muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the positively charged nucleus

き TRIUMF

Ordinary Muon Capture

$\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)$

- A negatively charged muon can replace an electron in an atom, forming a muonic atom
- Eventually bound on the $1 s_{1 / 2}$ orbit
- The muon can then be captured by the positively charged nucleus

Ordinary = non-radiative

$$
\binom{\text { Radiative muon capture (RMC): }}{\mu^{-}+{ }_{Z}^{A} \mathrm{X}\left(J_{i}^{\pi_{i}}\right) \rightarrow \nu_{\mu}+{ }_{Z-1}^{A} \mathrm{Y}\left(J_{f}^{\pi_{f}}\right)+\gamma}
$$

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

¿ TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$

¿ TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_{A} and the pseudoscalar coupling g_{P} involved

き TRIUMF

Ordinary Muon Capture (OMC) vs. $0 \nu \beta \beta$

- Weak interaction process with momentum transfer $q \approx 100 \mathrm{MeV} / c^{2}$
- Large m_{μ} allows transitions to all J^{π} states up to high energies
- Both the axial vector coupling g_{A} and the pseudoscalar coupling g_{P} involved
\rightarrow Similar to $0 \nu \beta \beta$ decay!

¿ TRIUMF

g_{A} Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)

Gysbers et al., Nature Phys. 15, 428 (2019)

¿ TRIUMF

q_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- How about g_{A} quenching at high momentum transfer $q \approx 100 \mathrm{MeV} / \mathrm{c}$?

Gysbers et al., Nature Phys. 15, 428 (2019)

¿ TRIUMF

q_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- How about g_{A} quenching at high momentum transfer $q \approx 100 \mathrm{MeV} / \mathrm{c}$?
- OMC could provide a hint!

Gysbers et al., Nature Phys. 15, 428 (2019)

き TRIUMF

q_{A}
 Quenching at High Momentum Exchange?

- Recently, first ab initio solution to g_{A} quenching puzzle was proposed for β-decay
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- How about g_{A} quenching at high momentum transfer $q \approx 100 \mathrm{MeV} / \mathrm{c}$?
- OMC could provide a hint!
- In principle, one could also access the pseudoscalar coupling g_{P}

Gysbers et al., Nature Phys. 15, 428 (2019)

き TRIUMF

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathrm{V}} M_{\mathrm{V}}(\kappa, u)+g_{\mathrm{A}} M_{\mathrm{A}}(\kappa, u)+g_{\mathrm{P}} M_{\mathrm{P}}(\kappa, u)\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

Masato Morita
Columbia University, New York, New York
AND
Akimiko Fujщi
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

き TRIUMF

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathrm{V}} M_{\mathrm{V}}(\kappa, u)+g_{\mathrm{A}} M_{\mathrm{A}}(\kappa, u)+g_{\mathrm{P}} M_{\mathrm{P}}(\kappa, u)\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

Masato Morita
Columbia University, New York, New York
AND
Akimiko Fujщiं
Brookhaven National Laboratory, Uplon, Long Island, New York
(Received November 9, 1959)

- Use realistic bound-muon wave functions

き TRIUMF

Muon-Capture Theory

- Interaction Hamiltonian \rightarrow capture rate:

$$
W\left(J_{i} \rightarrow J_{f}\right)=\frac{2 J_{f}+1}{2 J_{i}+1}\left(1-\frac{q}{m_{\mu}+A M}\right) q^{2} \sum_{\kappa u}\left|g_{\mathrm{V}} M_{\mathrm{V}}(\kappa, u)+g_{\mathrm{A}} M_{\mathrm{A}}(\kappa, u)+g_{\mathrm{P}} M_{\mathrm{P}}(\kappa, u)\right|^{2}
$$

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

Masato Morita
Columbia University, New York, New York
AND
Akimiko Fujni
Brookhaven National Laboratory, Upton, Long Island, New York
(Received November 9, 1959)

- Use realistic bound-muon wave functions
- Add the effect of two-body currents

Bound-Muon Wave Functions

- Expand the muon wave function in terms of spherical spinors

$$
\psi_{\mu}(\kappa, \mu ; \mathbf{r})=\psi_{\kappa \mu}^{(\mu)}=\left[\begin{array}{c}
-i F_{\kappa}(r) \chi_{-\kappa \mu} \\
G_{\kappa}(r) \chi_{\kappa \mu}
\end{array}\right],
$$

$$
\begin{aligned}
& \text { B-S }=\text { Bethe-Salpeter: } G_{-1}=2\left(\alpha Z m_{\mu}^{\prime}\right)^{\frac{3}{2}} e^{-\alpha Z m_{\mu}^{\prime} r} \\
& \mathbf{p I}=\text { pointlike } \\
& \mathbf{f s}=\text { finite size nucleus }
\end{aligned}
$$

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

き TRIUMF

Bound-Muon Wave Functions

- Expand the muon wave function in terms of spherical spinors

$$
\psi_{\mu}(\kappa, \mu ; \mathbf{r})=\psi_{\kappa \mu}^{(\mu)}=\left[\begin{array}{c}
-i F_{\kappa}(r) \chi_{-\kappa \mu} \\
G_{\kappa}(r) \chi_{\kappa \mu}
\end{array}\right],
$$

$$
\begin{aligned}
& \text { B-S }=\text { Bethe-Salpeter: } G_{-1}=2\left(\alpha Z m_{\mu}^{\prime}\right)^{\frac{3}{2}} e^{-\alpha Z m_{\mu}^{\prime} r} \\
& \mathbf{p I}=\text { pointlike } \\
& \mathbf{f s}=\text { finite size nucleus }
\end{aligned}
$$

where $\kappa=-j(j+1)+l(l+1)-\frac{1}{4}$ ($\kappa=-1$ for the $1 s_{1 / 2}$ orbit)

- Solve the Dirac equations in the Coulomb $V(r)$:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} r} G_{-1}+\frac{1}{r} G_{-1}=\frac{1}{\hbar c}\left(m c^{2}-E+V(r)\right) F_{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} r} F_{-1}-\frac{1}{r} F_{-1}=\frac{1}{\hbar c}\left(m c^{2}+E-V(r)\right) G_{-1}
\end{array}\right.
$$

き TRIUMF

Hadronic Two-Body Currents (2BCs)

- The effect of the two-body currents can be approximated by

$$
\left\{\begin{array}{l}
g_{\mathrm{A}}\left(q^{2}\right) \rightarrow g_{\mathrm{A}}\left(q^{2}\right)+\delta_{a}\left(\boldsymbol{q}^{2}\right) \\
g_{\mathrm{P}}\left(q^{2}\right) \rightarrow\left(1-\frac{q^{2}+m_{\pi}^{2}}{q^{2}} \boldsymbol{\delta}_{\boldsymbol{a}}^{\boldsymbol{P}}\left(\boldsymbol{q}^{\mathbf{2}}\right)\right) g_{\mathrm{P}}
\end{array}\right.
$$

Hoferichter, Menéndez Schwenk, Phys. Rev. D 102,074018 (2020)

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

Muon-Capture Studies at PSI, Switzerland

MONUMENT (OMC4DBD) collaboration aiming to measure:

- Partial muon-capture rates for OMC on ${ }^{24} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$

Muon-Capture Studies at PSI, Switzerland

MONUMENT (OMC4DBD) collaboration aiming to measure:

- Partial muon-capture rates for OMC on ${ }^{24} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$
- Muon-capture strength functions in $\beta \beta$-decay triplets

Muon-Capture Studies at PSI, Switzerland

MONUMENT (OMC4DBD) collaboration aiming to measure:

- Partial muon-capture rates for OMC on ${ }^{\mathbf{2 4}} \mathbf{M g},{ }^{32} \mathrm{~S}$ and ${ }^{56} \mathrm{Fe}$
- Muon-capture strength functions in $\beta \beta$-decay triplets
- Potentially partial capture rates for ${ }^{12} \mathbf{C}$, ${ }^{13} \mathrm{C},{ }^{48} \mathrm{Ti}$

き TRIUMF

Outline

Introduction

VS-IMSRG Study on Muon Capture on ${ }^{24} \mathbf{M g}$

No-Core Shell-Model Studies on Muon Capture on Light Nuclei

Summary and Outlook

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction

き TRIUMF

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation

き TRIUMF

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!
- Can be applied to medium-heavy to heavy nuclei of interest to $0 \nu \beta \beta$-decay studies

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- We choose a Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction
- Valence-space Hamiltonian and OMC operators decoupled with a unitary transformation
- Operators can be made consistent with the Hamiltonian!
- Can be applied to medium-heavy to heavy nuclei of interest to $0 \nu \beta \beta$-decay studies
\rightarrow First case: OMC on ${ }^{24} \mathrm{Mg}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\exp }(\mathrm{MeV})$	${\text { Rate }\left(10^{3} 1 / \mathrm{s}\right)}^{n}$					
		Exp. 1	NSM			IMSRG	
			1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1 bc	$1 \mathrm{bc}+2 \mathrm{bc}$	
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2	
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9	
Sum $\left(1^{+}\right)$		38.5 ± 8.9	36.7	24.5	30.0	20.0	
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3	
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9	
Sum $\left(2^{+}\right)$		20.9 ± 2.6	4.1	3.2	1.5	1.2	

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

[^0]
き TRIUMF

Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)				
		Exp. ${ }^{1}$		SM	IMSRG	
			1bc	$1 \mathrm{bc}+2 \mathrm{bc}$	1bc	$1 \mathrm{bc}+2 \mathrm{bc}$
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.0
$2{ }_{1}^{+}$	0.563	17.5 ± 2.1	1.0	0.7	0.0	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
Sum (2 ${ }^{+}$)		20.9 ± 2.6	4.1	3.2	1.5	1.2

- Rate to the lowest two 1^{+}states agrees with experiment

[^1]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated

[^2]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated
-1^{+}states mixed

[^3]
Capture Rates to Low-Lying States in ${ }^{24} \mathrm{Na}$

J_{i}^{π}	$E_{\text {exp }}(\mathrm{MeV})$	Rate ($10^{3} 1 / \mathrm{s}$)					$\begin{aligned} & -\hbar \omega=16 \mathrm{MeV} \\ & -E_{\max }=12 \\ & -E_{3 \max }=24 \end{aligned}$
		Exp. ${ }^{1}$	NSM		IMSRG		
			1bc	1bc+2bc	1bc	$1 \mathrm{bc}+2 \mathrm{bc}$	
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2	
1_{2}^{+}	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9	
Sum(1^{+})		38.5 ± 8.9	36.7	24.5	30.0	20.0	
$2{ }_{1}^{+}$	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3	
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9	
Sum (2+)		20.9 ± 2.6		3.2	1.5	1.2	

- Rate to the lowest two 1^{+}states agrees with experiment
- The effect of two-body currents may be overestimated
- 1^{+}states mixed
- Both NSM and VS-IMSRG notably underestimate the rates to 2^{+}states

[^4]
き TRIUMF

- Rates are sensitive to the interaction

LJ, Miyagi, Stroberg, Holt, Kotila, Suhonen, Phys. Rev. C 107, 014327 (2023)

き TRIUMF

- Rates are sensitive to the interaction
- It does not explain the poor agreement with the measured rates to the 2^{+}states (on the right)

Interaction Dependence

き TRIUMF

Outline

Introduction

VS=IMSRG Study on Muon Capture on ${ }^{24} \mathbf{M g}$

No-Core Shell-Model Studies on Muon Capture on Light Nuclei

Summary and Outlook

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{b} \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\max }$

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{b} \Omega
$$

き TRIUMF

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)
Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{I}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

 2

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{Inl}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{l}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

- $\mathrm{NN}\left(\mathrm{N}^{3} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)
Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)

$$
\left.E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{}\right) \Omega
$$

No-Core Shell Model (NCSM)

- OMC operators and one-body transition densities computed in large harmonic-oscillator (HO) basis
- HO basis truncated with $N_{\text {max }}$
- Hamiltonian based on the chiral EFT with different interactions:
- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{Inl}\right)$

Entem, Machleidt, Nosyk, Phys. Rev. C 96, 024004 (2017) (NN)

Gysbers et al., Nature Phys. 15, 428 (2019) (3N)

- $\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{In} \mathrm{l}, \mathrm{E} 7\right)$

Girlanda, Kievsky, Viviani, Phys. Rev. C 84, 014001 (2011) (E_{7})

- $\mathrm{NN}\left(\mathrm{N}^{3} \mathrm{LO}\right)+3 \mathrm{~N}\left(\mathrm{~N}^{2} \mathrm{LO}, \mathrm{InI}\right)$

Entem, Machleidt, Phys. Rev. C 68, 041001 (2003) (NN)
Somà et al., Phys. Rev. C 101, 014318 (2020) (3N)
$\rightarrow \mathrm{OMC}$ on ${ }^{6} \mathrm{Li},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

$$
\begin{array}{r}
N=2 n+l \\
I=1,3 \\
I=0,2 \\
I=1
\end{array}
$$

$$
I=0
$$

$$
\begin{array}{ccc}
N=1 & & 6 \rightarrow 8
\end{array}
$$

$$
E=\left(2 n+l+\frac{3}{2}\right) \mathfrak{h} \Omega
$$

Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $p_{s} w$. r. t. center of mass (CM) of the HO potential

き TRIUMF

Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates r_{s} and $\mathrm{p}_{\mathrm{s}} \mathrm{w}$. r. t. center of mass (CM) of the HO potential
- We remove CM contamination as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 J_{f}+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1} \frac{1}{\sqrt{2 u+1}}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

き TRIUMF

Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates \mathbf{r}_{s} and $\mathbf{p}_{\mathrm{s}} \mathbf{w}$. r. t. center of mass (CM) of the HO potential
- We remove CM contamination as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 J_{f}+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1} \frac{1}{\sqrt{2 u+1}}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

き TRIUMF

Spurious Center-of-Mass Motion

- OMC operators depend on single-particle coordinates \mathbf{r}_{s} and $\mathbf{p}_{\mathrm{s}} \mathbf{w}$. r. t. center of mass (CM) of the HO potential
- We remove CM contamination as:

Navrátil, Phys. Rev. C 104, 064322 (2021)

$$
\begin{aligned}
& \left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{s}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}, \mathbf{p}_{s}-\mathbf{P}\right)\right\| \Psi_{i}\right) \\
= & \frac{1}{\sqrt{2 J_{f}+1}} \times \sum_{p n p^{\prime} n^{\prime}}\left(n^{\prime}\left\|\hat{O}_{s}\left(-\sqrt{\frac{A-1}{A}} \boldsymbol{\xi}_{s},-\sqrt{\frac{A-1}{A}} \boldsymbol{\pi}_{s}\right)\right\| p^{\prime}\right) \\
& \times\left(M^{u}\right)_{n^{\prime} p^{\prime}, n p}^{-1} \frac{1}{\sqrt{2 u+1}}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\xi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{r}_{s}-\mathbf{R}_{\mathrm{CM}}\right) \\
\boldsymbol{\pi}_{s} & =-\sqrt{A /(A-1)}\left(\mathbf{p}_{s}-\mathbf{P}\right)
\end{aligned}
$$

¿ TRIUMF

Two-Body Currents

- Fermi-gas density ρ adjusted so that $\delta_{a}(0)$ reproduces the effect of exact two-body currents in
P. Gysbers et al., Nature Phys. 15, 428 (2019)

LJ, Navrátil, Kotila and Kravvaris, work in progress

き TRIUMF

- Fermi-gas density ρ adjusted so that $\delta_{a}(0)$ reproduces the effect of exact two-body currents in
P. Gysbers et al., Nature Phys. 15, 428 (2019)
- Two-body currents typically reduce the OMC rates by $\sim 1-2 \%$ in ${ }^{6} \mathrm{Li}$ and by $\lesssim 10 \%$ in ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

Two-Body Currents

LJ, Navrátil, Kotila and Kravvaris, work in progress

Capture Rates to the Ground State of ${ }^{6} \mathrm{He}$

- NCSM in keeping with experiment

Capture Rates to the Ground State of ${ }^{6} \mathrm{He}$

- NCSM in keeping with experiment
- The rates can be compared with the variational (VMC) and Green's function Monte-Carlo (GFMC) calculations

King et al., Phys. Rev. C 105, L042501 (2022)

LJ, Navrátil, Kotila, Kravvaris, work in progress

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment

LJ, Navrátil, Kotila, Kravvaris, work in progress

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)

LJ, Navrátil, Kotila, Kravvaris, work in progress

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones obtained with NN(CD-Bonn) and NN(AV'8)+3N(TM'(99)) interactions
Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

LJ, Navrátil, Kotila, Kravvaris, work in progress

Capture Rates to the Ground State of ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment
- Converge slow (clustering effects?)
- The results can be compared against earlier NCSM ones obtained with NN(CD-Bonn) and NN(AV'8)+3N(TM'(99)) interactions

Hayes et al., Phys. Rev. Lett. 91, 012502 (2003)

- 3-body forces essential to reproduce the measured rate

LJ, Navrátil, Kotila, Kravvaris, work in progress

ぎ TRIUMF

Capture Rates to Low-Lying States in ${ }^{12} \mathrm{~B}$

- Interaction dependence

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{12} \mathrm{~B}$

- Interaction dependence
- Adding the E_{7} spin-orbit term improves agreement with experiment

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
${ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{16} \mathrm{~N}\left(0_{1}^{-}\right)+\nu_{\mu}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$
${ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{16} \mathrm{~N}\left(0_{1}^{-}\right)+\nu_{\mu}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right)^{12} \mathrm{~B}$
- Forbidden β decay ground state of ${ }^{16} \mathrm{~N}$ interesting for beyond-standard model studies

${ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{16} \mathrm{~N}\left(0_{1}^{-}\right)+\nu_{\mu}$

き TRIUMF

Capture Rates to Low-Lying States in ${ }^{16} \mathrm{~N}$

- NCSM describes well the complex systems ${ }^{16} \mathrm{O}$ and ${ }^{16} \mathrm{~N}$
- Less sensitive to the interaction than ${ }^{12} \mathrm{C}\left(\mu^{-}, \nu_{\mu}\right){ }^{12} \mathrm{~B}$
- Forbidden β decay ground state of ${ }^{16} \mathrm{~N}$ interesting for beyond-standard model studies
- See the talks by D. Gazit and A. Glick-Magid!
${ }^{16} \mathrm{O}\left(0_{\mathrm{gs}}^{+}\right)+\mu^{-} \rightarrow{ }^{16} \mathrm{~N}\left(0_{1}^{-}\right)+\nu_{\mu}$

Total Muon-Capture Rates in ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

- Color gradient: increasing $N_{\max }$ (3,5,7 for ${ }^{12} \mathrm{C}$ and 2,4,6 for ${ }^{16} \mathrm{O}$)

LJ, Navrátil, Kotila, Kravvaris, work in progress

Total Muon-Capture Rates in ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

- Color gradient: increasing $N_{\max }$ (3,5,7 for ${ }^{12} \mathrm{C}$ and 2,4,6 for ${ }^{16} \mathrm{O}$)
- Rates obtained summing over ~ 50 final states of each parity

LJ, Navrátil, Kotila, Kravvaris, work in progress

き TRIUMF

Total Muon-Capture Rates in ${ }^{12} \mathbf{B}$ and ${ }^{16} \mathrm{~N}$

- Color gradient: increasing $N_{\max }$ (3,5,7 for ${ }^{12} \mathrm{C}$ and 2,4,6 for ${ }^{16} \mathrm{O}$)
- Rates obtained summing over ~ 50 final states of each parity
- Summing up the rates up to ~ 20 MeV, we capture $\sim 85 \%$ of the

 total rate in both ${ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

LJ, Navrátil, Kotila, Kravvaris, work in progress

き TRIUMF

Calculation:

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

Total Muon-Capture Rates

Experiment:

$$
\mu^{-}+{ }^{100} \mathrm{Mo} \rightarrow \nu_{\mu}+{ }^{100} \mathrm{Nb}
$$

Hashim et al., Phys. Rev. C 97, 014617 (2018)

き TRIUMF

Calculation:

$$
\mu^{-}+{ }^{12} \mathrm{C}\left(0_{\mathrm{gs}}^{+}\right) \rightarrow \nu_{\mu}+{ }^{12} \mathrm{~B}\left(J_{k}^{\pi}\right)
$$

Missing potentially important contribution from high energies

Total Muon-Capture Rates

Experiment:

$$
\mu^{-}+{ }^{100} \mathrm{Mo} \rightarrow \nu_{\mu}+{ }^{100} \mathrm{Nb}
$$

Hashim et al., Phys. Rev. C 97, 014617 (2018)

き TRIUMF

Outline

Introduction

VS-IMSRG Study on Muon Capture on ${ }^{24} \mathbf{M g}$

No-Core Shell=Model Studies on Muon Capture on Light Nuclei

Summary and Outlook

Summary

- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime

Summary

- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime
- Discrepancies between calculated and measured muon capture rates to ${ }^{24} \mathrm{Na}$ yet to be understood

Summary

- Ab initio muon-capture studies could shed light on g_{A} quenching at finite momentum exchange regime
- Discrepancies between calculated and measured muon capture rates to ${ }^{24} \mathrm{Na}$ yet to be understood
- No-core shell-model describes well partial muon-capture rates in light nuclei ${ }^{6} \mathrm{He},{ }^{12} \mathrm{~B}$ and ${ }^{16} \mathrm{~N}$

き TRIUMF

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies

Outlook

- Study potential OMC candidates ${ }^{48} \mathrm{Ti},{ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ti}$ in VS-IMSRG
- The "brute force" method cannot reach the total muon-capture rates \rightarrow use the Lanczos strength-function method, instead
- Study the effect of exact two-body currents and/or continuum on the OMC rates
- Extend the NCSM studies to other processes
- ${ }^{16} \mathrm{~N}$ potential candidate for forbidden β-decay studies
- ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ are both of interest in neutrino-scattering experiments

きTRIUMF

Thank you Merci

き TRIUMF

OMC operators

$$
\left(\Psi_{f}\left\|\sum_{s=1}^{A} \hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| \Psi_{i}\right)=\frac{1}{\sqrt{2 J_{f}+1}} \sum_{p n}\left(n\left\|\hat{O}_{k w u x}\left(\mathbf{r}_{s}, \mathbf{p}_{s}\right)\right\| p\right) \frac{1}{\sqrt{2 u+1}}\left(\Psi_{f}\left\|\left[a_{n}^{\dagger} \tilde{a}_{p}\right]_{u}\right\| \Psi_{i}\right)
$$

NME	\mathcal{O}_{s}
$\mathcal{M}[0 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u]$	$j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{q} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \delta_{w u}$
$\mathcal{M}[1 w u \pm]$	$\left[j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mp \frac{1}{g} j_{w \mp 1}\left(q r_{s}\right) \frac{d}{d r_{s}} G_{-1}\left(r_{s}\right)\right] \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \boldsymbol{\sigma}_{s}\right)$
$\mathcal{M}[0 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{0 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}\right) \boldsymbol{\sigma}_{s} \cdot \mathbf{p}_{s} \delta_{w u}$
$\mathcal{M}[1 w u p]$	$i j_{w}\left(q r_{s}\right) G_{-1}\left(r_{s}\right) \mathcal{Y}_{1 w u}^{M_{f}-M_{i}}\left(\hat{\mathbf{r}}_{s}, \mathbf{p}_{s}\right)$

¿ TRIUMF

Two-Body Currents

$$
\mathbf{J}_{i, 2 \mathrm{~b}}^{\mathrm{eff}}(\rho, \mathbf{p})=g_{A} \tau_{i}^{-}\left[\delta_{a}\left(p^{2}\right) \boldsymbol{\sigma}_{i}+\frac{\delta_{a}^{P}\left(p^{2}\right)}{p^{2}}\left(\mathbf{p} \cdot \boldsymbol{\sigma}_{i}\right) \mathbf{p}\right]
$$

with two-body functions $\delta_{a}\left(p^{2}\right), \delta_{a}^{P}\left(p^{2}\right)$ dependent on the Fermi-gas density ρ :

$$
\delta_{a}\left(p^{2}\right)=-\frac{\rho}{F_{\pi}^{2}}\left[\frac{c_{4}}{3}\left[3 I_{2}^{\sigma}(\rho, p)-I_{1}^{\sigma}(\rho, p)\right]-\frac{1}{3}\left(c_{3}-\frac{1}{4 m_{\mathrm{N}}}\right) I_{1}^{\sigma}(\rho, p)-\frac{c_{6}}{12} I_{c 6}(\rho, p)-\frac{c_{D}}{4 g_{A} \Lambda_{\chi}}\right]
$$

and

$$
\begin{aligned}
\delta_{a}^{P}\left(p^{2}\right)= & \frac{\rho}{F_{\pi}^{2}}\left[-2\left(c_{3}-2 c_{1}\right) \frac{m_{\pi}^{2} p^{2}}{\left(m_{\pi}^{2}+p^{2}\right)^{2}}+\frac{1}{3}\left(c_{3}+c_{4}-\frac{1}{4 m_{\mathrm{N}}}\right) I^{P}(\rho, p)-\left(\frac{c_{6}}{12}-\frac{2}{3} \frac{c_{1} m_{\pi}^{2}}{m_{\pi}^{2}+p^{2}}\right) I_{c 6}(\rho, p)\right. \\
& \left.-\frac{p^{2}}{m_{\pi}^{2}+p^{2}}\left(\frac{c_{3}}{3}\left[I_{1}^{\sigma}(\rho, p)+I^{P}(\rho, p)\right]+\frac{c_{4}}{3}\left[I_{1}^{\sigma}(\rho, p)+I^{P}(\rho, p)-3 I_{2}^{\sigma}(\rho, p)\right]\right)-\frac{c_{D}}{4 g_{A} \Lambda_{\chi}} \frac{p^{2}}{m_{\pi}^{2}+p^{2}}\right]
\end{aligned}
$$

¿ TRIUMF

Excitation Energies in the $A=24$ Systems

民 TRIUMF
 Electromagnetic Moments in the $A=24$ Systems

Nucleus	J_{i}^{π}	$E(\mathrm{MeV})$			$\mu\left(\mu_{\mathrm{N}}\right)$				$Q\left(e^{2} \mathrm{fm}^{2}\right)$		
		exp.	NSM	IMSRG	exp.	NSM	IMSRG	exp.	NSM	IMSRG	
${ }^{24} \mathrm{Mg}$	2^{+}	1.369	1.502	1.981	$1.08(3)$	1.008	1.033	$-29(3)$	-19.346	-12.9	
${ }^{24} \mathrm{Mg}$	4^{+}	4.123	4.372	5.327	$1.7(12)$	2.021	2.096	-			
${ }^{24} \mathrm{Mg}$	2^{+}	4.238	4.116	4.327	$1.3(4)$	1.011	1.085	-			
${ }^{24} \mathrm{Mg}$	4^{+}	6.010	5.882	6.347	$2.1(16)$	2.015	2.089	-			
${ }^{24} \mathrm{Na}$	4^{+}	0.0	0.0	0.0	$1.6903(8)$	1.533	1.485	-			
${ }^{24} \mathrm{Na}$	1^{+}	0.472	0.540	0.397	$-1.931(3)$	-1.385	-0.344	-			

β Decays of the $A=24$ Systems

Nucleus	$J_{i} \rightarrow J_{f}$	$\log f t$		
		exp.	NSM	IMSRG
${ }^{24} \mathrm{Na}$	$1_{1}^{+} \rightarrow 0_{1}^{+}$	5.80	$5.188-5.223$	$4.448-4.545$
${ }^{24} \mathrm{Na}$	$4_{\mathrm{gs}}^{+} \rightarrow 4_{1}^{+}$	6.11	$5.416-5.461$	$5.795-5.866$
${ }^{24} \mathrm{Na}$	$4_{\mathrm{gs}}^{+} \rightarrow 3_{1}^{+}$	6.60	$5.727-5.773$	$6.342-6.422$

Excitation Energies of ${ }^{12} \mathbf{B}$

$J_{i}{ }^{\text {r }}$	Interaction	$E_{\text {exc. }}(\mathrm{MeV})$			
		$N_{\text {max }}=4$	$N_{\text {max }}=6$	$N_{\text {max }}=8$	Exp.
1_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{Ninl}$	0.0	0.0	0.0	0.0
	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)$-3NInIE7	0.135	0.000	0.000	
2_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{Ninl}$	0.251	0.465	0.538	0.953
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.000	0.027	0.097	
0_{1}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{Ninl}$	2.073	1.831	1.713	2.723
	NN($\left.\mathrm{N}^{4} \mathrm{LO}\right)$-3NInIE7	3.306	2.909	2.761	
2_{2}^{+}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	3.816	3.490	3.344	3.760
	NN(${ }^{4}$ LO)-3NInIE7	4.919	4.463	4.281	

Excitation Energies of ${ }^{16} \mathrm{~N}$

J_{i}^{π}	Interaction	$E_{\text {exc. }}(\mathrm{MeV})$			
		$N_{\text {max }}=4$	$N_{\text {max }}=6$	$N_{\text {max }}=8$	Exp.
2_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInl}$	0.154	0.087	0.064	0.0
	NN(${ }^{4} \mathrm{LO}$)-3NInIE7	0.214	0.146	0.133	
0_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{Ninl}$	2.245	1.487	1.010	0.120
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	2.807	2.065	1.606	
$3{ }_{1}^{-}$	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	0.000	0.000	0.000	0.298
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	0.000	0.000	0.000	
1_{1}^{-}	$\mathrm{NN}\left(\mathrm{N}^{4} \mathrm{LO}\right)-3 \mathrm{NInI}$	2.561	1.833	1.363	0.397
	NN($\mathrm{N}^{4} \mathrm{LO}$)-3NInIE7	2.985	2.310	1.869	

[^0]: 'Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^1]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^2]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^3]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

[^4]: ${ }^{1}$ Gorringe et al., Phys. Rev. C 60, 055501 (1999)

