℀TRIUMF

The workshop on Progress in Ab Initio Nuclear Theory

28 February 2023 to 3 March 2023

DORON GAZIT RACAH INSTITUTE OF PHYSICS HEBREW UNIVERSITY OF JERUSALEM

NUCLEAR STRUCTURE IN BETA DECAY SEARCHES FOR <u>Beyond the</u> Standard Model Signals

COLLABORATORS AND FUNDING

Funding: Israeli Science Foundation (ISF) Ministry of Science and Technology, Israel Hebrew University Guy Ron (Experimental)

University of Washington Ayala Glick Magid Vincenzo Cirigliano Alejandro Garcia

Chalmers University Christian Forssén

ÚJF rez Daniel Gazda

TRIUMF Petr Navrátil Peter Gysbers

University of Barcelona Javier Menéndez LLNL Jason Harke Nickolas Scielzo Aaron Gallant Richard Hughes Yonatan Mishnayot

SNRC (SARAF) Tsviki Hirsh Sergey Vaintraub Leonid Waisman Boaz Kaizer Arik Kreisel Hodaya Dafna Maayan Buzaglo

Technion (Israel) Ben Ohayon

Weizmann Institute Michael Hass

NSCL Oscar Naviliat-Cuncic

U Chicago Guy Savard

NC State University Albert Young

"The darkest places in hell are reserved for those who maintain their neutrality in times of moral crisis" (Dante Alighieri) INTRODUCTION

INTRODUCTION – POSSIBLE REALIZATIONS OF BEYOND THE STANDARD Model (BSM) Effects at low energy

INTRODUCTION IN A NUTSHELL

- Nuclear phenomena are a "precision frontier" in the search for BSM signatures:
 - New techniques allow <u>unprecedented experimental precision</u> aiming at 0.1% level precision.
 - Need an <u>accompanying theoretical effort</u>, to provide high precision and controlled accuracy predictions, to analyze experimental results and pinpoint new physics.
- Constraining extra interaction terms to ~ 0.1% is probing physics at few TeV scale.
- One of the main challenges in increasing theory accuracy is related to the nuclear structure.

$$W, Z \ propagator = \frac{g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{M_{W}^{2}}}{q^{2} + M_{W}^{2}}$$

$$W, Z \ propagator = \frac{g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{M_{W}^{2}}}{q^{2} + M_{W}^{2}} \rightarrow \frac{g_{\mu\nu}}{M_{W}^{2}}$$

SUB-LEADING BSM TENSOR INTERACTION

SUB-LEADING BSM INTERACTIONS

SUB-LEADING BSM INTERACTIONS

M. Gonzalez-Alonso, et al., PPNP 104 165-223 (2019)

SUB-LEADING BSM INTERACTIONS

For the simplest BSM operators (n = 2): few TeV scale $\leftrightarrow \epsilon_{sym} \sim 10^{-3}$ Needed accuracy of calculations & measurements $\sim 10^{-4} - 10^{-3}$

BETA DECAYS OBSERVABLES IN ON-GOING EXPERIMENTAL SEARCHES

NUCLEAR STRUCTURE EFFECTS IN BETA-DECAYS

- Nuclear regime effects in the effort to predict beta-decay observables:
 - In <u>nuclear structure</u> corrections to the interaction of the electro-weak probes with the nucleus, beyond the leading order approximation of the probes interacting with a single nucleon in the nucleus;
 - a lattice-QCD assessment of nucleon charges, essential to connect nuclear observables to quark-level couplings. In particular, the uncertainties in g_A, g_S, and g_T, limit the sensitivity to ε_R, ε_S, and ε_T, respectively.
 - <u>nuclear structure</u> effects in the calculation of radiative corrections, particularly the **γ**-W box;

NUCLEAR STRUCTURE EFFECTS IN BETA-DECAYS

- Nuclear regime effects in the effort to predict beta-decay observables:
 - In the second second
 - a lattice-QCD assessment of nucleon charges, essential to connect nuclear observables to quark-level couplings. In particular, the uncertainties in g_A, g_S, and g_T, limit the sensitivity to ε_R, ε_S, and ε_T, respectively.
 - <u>nuclear structure</u> effects in the calculation of radiative corrections, particularly the **γ**-W box;

BETA DECAYS OBSERVABLES IN ON-GOING EXPERIMENTAL SEARCHES

Energy spectrum

	TABLE III. List of nuclear β -	decay spectral measureme	ents in search for non-SM physics ^a	
Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
β spectrum	GT	¹¹⁴ In	MiniBETA-Krakow-Leuven	0.1~%
β spectrum	GT	⁶ He	LPC-Caen	0.1~%
β spectrum	GT	⁶ He, ²⁰ F	NSCL-MSU	0.1~%
β spectrum	GT, F, Mixed	⁶ He, ¹⁴ O, ¹⁹ Ne	He6-CRES	0.1~%

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
$\beta - \nu$	F	³² Ar	Isolde-CERN	0.1~%
$\beta - \nu$	F	³⁸ K	TRINAT-TRIUMF	0.1~%
$\beta - \nu$	GT, Mixed	⁶ He, ²³ Ne	SARAF	0.1~%
$\beta - \nu$	GT	⁸ B, ⁸ Li	ANL	0.1~%
$\beta - \nu$	F	²⁰ Mg, ²⁴ Si, ²⁸ S, ³² Ar,	TAMUTRAP-Texas A&M	0.1~%
$\beta - \nu$	Mixed	¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F	Notre Dame	0.5~%
β & recoil	Mixed	^{37}K	TRINAT-TRIUMF	0.1~%
asymmetry				

TABLE I. List of nuclear β -decay correlation experiments in search for non-SM physics ^a

^a Experiments specifically searching for time-reversal symmetry violation not listed here

In this talk, I outline a formalism to assess the accuracy of nuclear-structure weak interaction effects in precision β -decay studies, and show the detailed studies of ⁶He (and ²³Ne).

Holstein (70's), Behrens & Bühring (70's), Hayen, Young (2021). Cirigliano, DG et al., arXiv:1907.02164v2 (2019)

Angular correlation

	Σ	$(\epsilon) = \frac{2G^2}{\pi^2} \frac{1}{\Delta}$	$\frac{2\Delta J + 1}{J(2J_i + 1)}(\epsilon_0 - \epsilon_0)$	$\epsilon)^{2}k\epsilon F^{(\pm)}(Z_{f},\epsilon), \times (corrections)$
Item	Fffect	Formula	Magnitude	_
1	Phase space factor ^a	$\frac{1}{pW(W_0 - W)^2}$	Macintade	_
2	Traditional Fermi function	F_0	Unity or larger	
3	Finite size of the nucleus			_
4	Radiative corrections	R		
5	Shape factor	С	$10^{-1} - 10^{-2}$	NUCLEAR STRUCTURE DEPENDENT
6	Atomic exchange	X		
7	Atomic mismatch	r		
8	Atomic screening	S		_
9	Shake-up	See item 7		
10	Shake-off	See item 7		
11	Isovector correction	C_I		
12	Recoil Coulomb correction	Q	$10^{-3} \cdot 10^{-4}$	
13	Diffuse nuclear surface	U	10 -10	NUCLEAR STRUCTURE DEPENDENT
14	Nuclear deformation	$D_{\rm FS}$ & D_C		
15	Recoiling nucleus	R_N		
16	Molecular screening	ΔS_{Mol}		
17	Molecular exchange	Case by case		_
18	Bound state β decay	Γ_b/Γ_c	Smaller than $1 \cdot 10^{-4}$	
19	Neutrino mass	Negligible		_

Beta Spectrum Generator: High precision allowed β spectrum shapes

L. Hayen^{a,*}, N. Severijns^a

Nuclear dependent part – neglecting rad. corrections:

Tensor symmetry probe multipole expansion

- The currents are antisymmetric tensors $\hat{j}^{\mu\nu}(\vec{x})$, $\hat{J}^T_{\mu\nu}(\vec{x})$.
- No Coulomb multipole \hat{C}_I^T
- From symmetry principles:
 - $\Delta \pi = (-)^{J-1}$: "Axial vector" like tensor operators:

$$\hat{L}_J^T \approx -\frac{i}{\sqrt{2}} \frac{g_T}{g_A} \hat{L}_J^A$$

• $\Delta \pi = (-)^{J}$: "Vector" like tensor operators: $\hat{L}_{J}^{T'} \propto \frac{q}{m_{N}} \approx 0$

$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_J(qx)\vec{Y}_{JJM}(\hat{x})(\cdot \hat{\vec{J}}(\vec{x}) \propto q^{J-1})]$$

$$\hat{M}_{JM}(q) = \int d\vec{x} j_J(qx)\vec{Y}_{JJM}(\hat{x})(\hat{\vec{J}}(\vec{x}) \propto q^{J-1})$$

$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_J(qx)Y_{JM}(\hat{x})] \cdot \hat{\vec{J}}(\vec{x}), \quad \propto \hat{E}_{JM}$$

$$Nuclear probe coupling operators$$

Glick-Magid, DG (JPhG 2022, PRD, in press, 2023)

Nuclear dependent part – neglecting rad. corrections:

Assuming V-A+c*T structure (for pure axial transition)

$$\begin{split} \Theta^{J^{A}}\left(q,\vec{\beta}\cdot\hat{\nu}\right) &= \frac{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}{2\left|g_{A}\right|^{2}}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\frac{2J+1}{J}\left(1+\delta_{1}^{J^{A}}+\frac{\left|C_{T}\right|^{2}+\left|C_{T}'\right|^{2}}{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}\right)\cdot\\ &\quad \cdot\left\{1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}_{a}^{J^{A}}-2\frac{\left|C_{T}\right|^{2}+\left|C_{T}'\right|^{2}}{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}\right)+\right.\\ &\quad \left.+\frac{J-1}{2J+1}\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\left(1-\delta_{1}^{J^{A}}-2\frac{\left|C_{T}\right|^{2}+\left|C_{T}'\right|^{2}}{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}\right)\mp\frac{m_{e}}{\epsilon}\left(0+\delta_{b}^{J^{A}}+2\Re\epsilon\frac{C_{A}C_{T}^{*}+C_{A}'C_{T}'^{*}}{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}\right)\right\}+\mathcal{O}\left(\epsilon_{qR}^{2J}\right)\end{split}$$

Glick-Magid, DG (JPhG 2022, PRD, in press, 2023)

e.g., allowed transitions $\Delta J^{\pi} = 0, 1^{+}$ $d\omega^{V-A} = \frac{4}{\pi^{2}} k \epsilon \left(W_{0} - \epsilon\right)^{2} d\epsilon \frac{d\Omega_{k}}{4\pi} \frac{d\Omega_{\nu}}{4\pi} \frac{1}{2J_{i}} \frac{1}{1 + 1} \frac{1}{2} \frac{\left|C_{V}\right|^{2} + \left|C_{V}'\right|^{2}}{2} \left(1 + \frac{|\hat{\nu} \cdot \vec{\beta}|}{2}\right) \left|\left\langle J_{f} \left\|\hat{C}_{0}^{V}\right\| J_{i}\right\rangle\right|^{2} \frac{1}{1 + 1 + 1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{1 + 1 + 1} \frac{1}{2} \frac{1}{2} \frac{1}{1 + 1} \frac{1}{2} \frac{1}{1 + 1} \frac{1}{2} \frac{1}{2} \frac{1}{1 + 1} \frac{1}$

Neglected are all finite momentum transfer terms, i.e., nuclear physics is neglected.

$$\begin{aligned} \Delta J^{\pi} &= 0, 1^{+} \\ d\omega ^{\mathsf{V+T}} &= \frac{4}{\pi^{2}} k \epsilon \left(W_{0} - \epsilon \right)^{2} d\epsilon \frac{d\Omega_{k}}{4\pi} \frac{d\Omega_{\nu}}{4\pi} \frac{1}{2J_{i} + 1} \cdot \\ &\cdot \left\{ \frac{|C_{V}|^{2} + \left|C_{V}'\right|^{2}}{2} \left(1 + \hat{\nu} \cdot \vec{\beta} \right) \left| \left\langle J_{f} \left\| \hat{C}_{0}^{V} \right\| J_{i} \right\rangle \right|^{2} \right. \\ &\left. + \frac{|C_{T}|^{2} + |C_{T}'|^{2}}{2} \left(3 \left(1 + \frac{1}{3} \hat{\nu} \cdot \vec{\beta} \right) \left| \left\langle J_{f} \left\| \hat{L}_{1}^{A} \right\| J_{i} \right\rangle \right|^{2} \right\} \end{aligned}$$

e.g., allowed transitions $\Delta J^{\pi} = 0, 1^{+}$ $d\omega^{V-A} = \frac{4}{\pi^{2}} k \epsilon \left(W_{0} - \epsilon\right)^{2} d\epsilon \frac{d\Omega_{k}}{4\pi} \frac{d\Omega_{\nu}}{4\pi} \frac{1}{2J_{i}} + \frac{1}{Fermi} \cdot \left\{ \frac{|C_{V}|^{2} + |C_{V}'|^{2}}{2} \left(1 + \hat{\nu} \cdot \vec{\beta}\right) | \left\langle J_{f} \| \hat{C}_{0}^{V} \| J_{i} \right\rangle \right\}$ $+ \frac{|C_{A}|^{2} + |C_{A}'|^{2}}{2} 3 \left(1 - \frac{1}{3} \hat{\nu} \cdot \vec{\beta}\right) | \left\langle J_{f} \| \hat{L}_{1}^{A} \| J_{i} \right\rangle |^{2}$ Correlation coefficient

Neglected are all finite momentum transfer terms and other nuclear corrections.

e.g., pure GT transitions $\Delta J^{\pi} = 1^+$

$$d\omega \propto 1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_F\frac{m_e}{\epsilon}$$

Correlation coefficient
$$a_{\beta\nu} = -\frac{1}{3} \left(1 + \delta_a + \frac{|C_T|^2 + |C_T'|^2}{2|C_A|^2} \right)$$

$$\text{GT} \quad \frac{\text{SM (nuclear)}}{\text{correction}} \quad \frac{\text{BSM}}{\text{signature}}$$

$$\text{Terms with Fierz-like spectral behavior} \quad b_F = 0 + \delta_b + \frac{C_T^* + C_T^{\prime *}}{C_A}$$

Naïvely, the correlation coefficient has quadratically weaker sensitivity to BSM terms. However...

e.g., pure GT transitions $\Delta J^{\pi} = 1^+$

$$d\omega \propto 1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_F\frac{m_e}{\epsilon}$$

$$\begin{array}{l} \text{Correlation coefficient} \ a_{\beta\nu} = -\frac{1}{3} \bigg(1 + \delta_a + \frac{|C_T|^2 + |C_T'|^2}{2|C_A|^2} \bigg) \\ \text{Ferms with Fierz-like spectral behavior} \ b_F = 0 + \delta_b + \frac{C_T^* + C_T'^*}{C_A} \\ \text{Measured correlation coefficient:} \ a_{\beta\nu}^{measured} = a_{\beta\nu} \cdot \bigg(1 + b_F \left\langle \frac{m_e}{\epsilon} \right\rangle_{experiment} \bigg)^{-1} \end{array}$$

Since $\left\langle \frac{m_e}{\epsilon} \right\rangle \approx 0.01 - 10$, this creates a linear sensitivity to BSM signatures even in the angular coefficients, albeit (usually) suppressed compared to b_F .

DG, Ron (in prep. 2023)

ASSESSING THE SIZE AND UNCERTAINTIES OF THE NUCLEAR STRUCTURE CORRECTIONS TO BETA DECAY OBSERVABLES

31

SHAP<u>E AND RECOIL CORRECTIONS – SMALL PARAMETERS</u>

Small parameter #1: $\epsilon_q = rac{qR}{\hbar c} pprox 10^{-2}$ – multipole expansion

Small parameter #2: $\epsilon_{EFT} pprox 0.1 - 0.4$ - systematic uncertainty in the nuclear model.

Small parameter #3: $\epsilon_{NR} = \frac{P_{nucleon}}{M} \approx 0.05 - 0.2$ Non-relativistic expansion of currents.

Small parameter #4:
$$\epsilon_{recoil} = \frac{q}{M} \approx 0.002$$
 nucleaon recoil.

Small parameter #5: $\epsilon_{\pi} = rac{\omega q}{m_{\pi}^2} pprox 10^{-4}$ Pseudo-scalar poles.

Small parameter #6: $\epsilon_{\alpha} = \alpha Z_f \approx 10^{-2} - 1$ Coulomb corrections.

Small parameter #7: ϵ_{Model} is related to the implementation of the Nuclear Model

Small parameter #8: ϵ_{solver} numerical error in the solution of the Schrödinger equation

For precision beta decays, at least the leading correction need to be calculated explicitly to reach experimental sensitivity.

These are <u>nuclear structure dependent</u> corrections, beyond the leading usual elementary particle zero momentum transfer approach.

$$\hat{C}_{JM}(q) = \int d\vec{x} j_{J}(qx) Y_{JM}(\hat{x}) \hat{\mathcal{J}}_{0}(\vec{x})$$

$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_{J}(qx) \vec{Y}_{JJM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x}) \propto q^{J-1}$$

$$\hat{M}_{JM}(q) = \int d\vec{x} j_{J}(qx) \vec{Y}_{JJM}(\hat{x}) \cdot \hat{\vec{\mathcal{J}}}(\vec{x})$$

$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_{J}(qx) Y_{JM}(\hat{x})] \cdot \hat{\vec{\mathcal{J}}}(\vec{x}), \quad \sqrt{J+1} E_{JM}$$
Natural kinematical suppression of the correction!

These are <u>nuclear structure dependent</u> corrections, beyond the leading usual elementary particle zero momentum transfer approach.

$$\hat{C}_{JM}(q) = \int d\vec{x}_{jJ}(qx) \vec{y}_{JM}(\hat{x}) \hat{\mathcal{J}}_{0}(\vec{x})$$

$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [jJ(qx) \vec{y}_{JJM}(\hat{x})] \cdot \hat{\mathcal{J}}(\vec{x}) \propto (q^{J-3})$$

$$\hat{M}_{JM}(q) = \int d\vec{x}_{jJ}(qx) \vec{y}_{JJM}(\hat{x}) \cdot \hat{\mathcal{J}}(\vec{x}) \qquad (q^{J-3})$$

$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [jJ(qx) \vec{y}_{JM}(\hat{x})] \cdot \hat{\mathcal{J}}(\vec{x}), \qquad (J+1)^{E_{JM}}$$
Natural kinematical suppression of the correction!

These are <u>nuclear structure dependent</u> corrections, be <u>Analyze</u> <u>Nuclear</u> probe coupling elementary particle zero momentum transfer approa *perators* <u>scaling</u> to <u>understand</u> *how* <u>explicit</u> <u>NME</u> <u>calculation</u>

$$\hat{C}_{JM}(q) = \int d\vec{x} j_J(qx) Y_{JM}(\hat{x}) \hat{\mathcal{J}}_0(\vec{x}) \propto q^J$$

$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_J(qx) \vec{Y}_{JJM}(\hat{x})] \cdot \hat{\mathcal{J}}(\vec{x}) \propto q^{J-1}$$

$$\hat{M}_{JM}(q) = \int d\vec{x} j_J(qx) \vec{Y}_{JJM}(\hat{x}) \cdot \hat{\mathcal{J}}(\vec{x}) \propto q^J$$

$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_J(qx) Y_{JM}(\hat{x})] \cdot \hat{\mathcal{J}}(\vec{x}), \quad \approx \int_{J+1}^{J} \hat{E}_{JM}$$

In beta decays, shape corrections are few per-milles, thus the first correction should be calculated explicitly to reach needed accuracy

These are nuclear structure dependent corrections.

Needed accuracy of the calculation $\approx 10^{-4} - 10^{-3}$

This dictates the number of corrections needed to be calculated explicitly.

$$\hat{C}_{JM}(q) = \int d\vec{x} j_J(qx) Y_{JM}(\hat{x}) \hat{\mathcal{J}}_0(\vec{x}) \propto q^J$$

$$\hat{E}_{JM}(q) = \frac{1}{q} \int d\vec{x} \vec{\nabla} \times [j_J(qx) \vec{Y}_{JJM}(\hat{x})] \hat{\mathcal{J}}(\vec{x}) \propto q^{J-1}$$

$$\hat{M}_{JM}(q) = \int d\vec{x} j_J(qx) \vec{Y}_{JJM}(\hat{x}) \hat{\mathcal{J}}(\vec{x}) \propto q^J$$

$$\hat{L}_{JM}(q) = \frac{i}{q} \int d\vec{x} \vec{\nabla} [j_J(qx) Y_{JM}(\hat{x})] \hat{\mathcal{J}}(\vec{x}), \quad \approx \sqrt{\frac{J}{J+1}} \hat{E}_{JM}$$

$$\mathcal{J}^{\mu\dagger}(\mathbf{r}) = \sum_{i=1}^{A} \tau_i^{-} \left[\delta^{\mu 0} J_{i,1b}^0 - \delta^{\mu k} J_{i,1b}^k \right] \delta(\mathbf{r} - \mathbf{r}_i)$$

$$J_{i,1b}^{0}(p^{2}) = 1 - g_{A} \frac{\mathbf{P} \cdot \boldsymbol{\sigma}_{i}}{2m}, \qquad \text{Exchange}$$

$$J_{i,1b}(p^{2}) = g_{A} \boldsymbol{\sigma}_{i} + i\kappa_{V} \frac{\boldsymbol{\sigma}_{i} \times \mathbf{p}}{2m}, \qquad \text{currents}$$

Chiral suppression additional factor 3-5

In beta decays, shape corrections are few per-milles, thus the first correction should be calculated explicitly to reach needed accuracy

EFFECTIVE FIELD THEORY FOR THE NUCLEAR-PROBE INTERACTION

• EFT expansion parameter
$$\epsilon_{EFT} \propto \frac{\max(q,Q,\dots)}{M_{br}} \approx \frac{1}{10} - \frac{1}{3}$$
:

- Breakdown scale in chiral EFT is about $4\pi f_{\pi} \approx 1 \text{ GeV/c}$
- Order by order expansion of the currents: $J_{SM} = \frac{J^{LO}}{J^{LO}} + \frac{\epsilon_{EFT}}{\epsilon_{EFT}} \cdot J^{NLO} + \frac{\epsilon_{EFT}^{a}}{\epsilon_{EFT}} J^{N^{a}LO} \text{ with } a > 1$
- LO single nucleon current
- NLO corrections to single nucleon currents
- NLO or higher orders include 2-body currents (magnetic NLO, weak axial – $N^{7/4+3}LO$)

EXAMPLE: SM PREDICTION FOR GT TRANSITION

$$\frac{d\omega^{1^{+}\beta^{-}}}{dE\frac{d\Omega_{k}}{4\pi}\frac{d\Omega_{\nu}}{4\pi}} = \frac{4}{\pi^{2}} \left(E_{0} - E\right)^{2} kEF^{-} \left(Z_{f}, E\right) C_{\text{corr}} \left| \left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle \right|^{2} \right.$$

$$\times 3 \left(1 + \delta_{1}^{1^{+}\beta^{-}} \right) \left[1 + a_{\beta\nu}^{1^{+}\beta^{-}} \vec{\beta} \cdot \hat{\nu} + b_{\text{F}}^{1^{+}\beta^{-}} \frac{m_{e}}{E} \right], \quad (1)$$

37

$$\begin{split} \text{Shape} \qquad \delta_{1}^{1+\beta^{-}} &\equiv \frac{2}{3} \mathfrak{Re} \left[-E_{0} \frac{\langle \|\hat{C}_{1}^{A}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} + \sqrt{2} \left(E_{0} - 2E \right) \frac{\langle \|\hat{M}_{1}^{V}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} \right] \\ &- \frac{4}{7} ER\alpha Z_{f} - \frac{233}{630} \left(\alpha Z_{f} \right)^{2}, \\ \frac{\text{Angular}}{\text{correlation}} & \tilde{\delta}_{a}^{1+\beta^{-}} &\equiv \frac{4}{3} \mathfrak{Re} \left[2E_{0} \frac{\langle \|\hat{C}_{1}^{A}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} + \sqrt{2} \left(E_{0} - 2E \right) \frac{\langle \|\hat{M}_{1}^{V}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} \right] \\ &+ \frac{4}{7} ER\alpha Z_{f} - \frac{2}{5} E_{0} R\alpha Z_{f}, \\ \frac{\text{Induced Fierz-like}}{\text{spectral correction}} \delta_{b}^{1+\beta^{-}} &\equiv \frac{2}{3} m_{e} \mathfrak{Re} \left[\frac{\langle \|\hat{C}_{1}^{A}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} + \sqrt{2} \frac{\langle \|\hat{M}_{1}^{V}/q\| \rangle}{\langle \|\hat{L}_{1}^{A}\| \rangle} \right], \end{split}$$

$$\tag{4}$$

$$\begin{split} & \underbrace{\mathbf{G}_{\mathbf{HE}} \stackrel{\boldsymbol{\beta}^{-}}{\longrightarrow} \mathbf{G}_{\mathbf{LI}}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{-}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}} \qquad \underbrace{\mathbf{G}_{\mathbf{M}^{\ast} \otimes \mathcal{O}_{\mathbf{p}^{\ast}} = 3.510 \text{ MeV}}_{\mathbf{M}^{\ast} \otimes \mathcal{O}$$

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

Observables' corrections

 $|\langle \Psi_f \| L_1^A(q) \| \Psi_i \rangle|^2$

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

 $|\langle \Psi_f \| L_1^A(q) \| \Psi_i \rangle|^2$

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

 $d\omega \propto \left(1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_{\rm F}\frac{m_e}{\epsilon}\right) \left|\left\langle\psi_f\|\hat{L}_J\|\psi_i\right\rangle\right|^2$

 $\delta_1^{1^+\beta^-} \equiv \frac{2}{3} \Re \mathfrak{e} \left[-E_0 \frac{\langle \|\hat{C}_1^A/q\|\rangle}{\langle \|\hat{L}_1^A\|\rangle} + \sqrt{2} \left(E_0 - 2E \right) \frac{\langle \|M_1^V/q\|\rangle}{\langle \|\hat{L}_1^A\|\rangle} \right]$ $-\frac{4}{7}ERlpha Z_f-\frac{233}{630}\left(lpha Z_f\right)^2,$ $\tilde{\delta}_{a}^{1^{+}\beta^{-}} \equiv \frac{4}{3} \Re \mathfrak{e} \left[2E_{0} \frac{\langle \|\hat{C}_{1}^{A}/q\|\rangle}{\langle \|\hat{L}_{1}^{A}\|\rangle} + \sqrt{2} \left(E_{0} - 2E\right) \frac{\langle \|\hat{M}_{1}^{V}/q\|\rangle}{\langle \|\hat{L}_{1}^{A}\|\rangle} \right]$ $+\frac{4}{7}ER\alpha Z_f - \frac{2}{5}E_0R\alpha Z_f,$ $|\langle \Psi_f \| \frac{C_1^A(q)}{q} \| \Psi_i \rangle|^2$ $\delta_{\mathrm{b}}^{1^{+}eta^{-}} \equiv rac{2}{3}m_{e}\mathfrak{Re}\left[rac{\langle \|\hat{C}_{1}^{A}/q\|
angle}{\langle \|\hat{L}_{1}^{A}\|
angle} + \sqrt{2}rac{\langle \|\hat{M}_{1}^{V}/q\|
angle}{\langle \|\hat{L}_{1}^{A}\|
angle}
ight],$ ×10⁻⁸ (MeV⁻²) 2.0 2.0 ~⁶ $2^{\mathbf{r}}$ °.

2.5

q (MeV)

0.0

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

ESTIMATING ϵ_{EFT} IN A SPECIFIC CASE: AB-INITIO CALCULATION OF ⁶HE BETA DECAY INTO ⁶LI

Pastore *et al.*, PRC87 035503 (2013) Friman-Gayer *et al.*, PRL126 102501 (2021)

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

⁶HE \rightarrow ⁶LI ANGULAR CORRELATION

Experiments are aiming at ~few 0.1% precision.

$$a_{\beta\nu} = a_{\beta\nu}^{\text{measured}} - a_{\beta\nu}^{\text{GT}} \left(\left\langle \tilde{\delta}_{a}^{1^{+}\beta^{-}} \right\rangle - b_{\text{F}}^{1^{+}\beta^{-}} \left\langle \frac{m_{e}}{E} \right\rangle \right)$$
$$= a_{\beta\nu}^{\text{measured}} - 0.70 (24) \cdot 10^{-3},$$

Johnson et al., Phys.Rev.132.3; Gluck, Nucl.Phys.A628; Gonzalez-Alonso & Naviliat-Cuncic, Phys.Rev.C94 Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, PLB 2022

$^{6}\text{HE} \rightarrow ~^{6}\text{LI}$ induced fierz-like spectral term

 The spectrum is used to find induced Fierz-like behavior term

$$b_{\rm F} = 0 + \delta_b + \frac{C_T^* + C_T^{**}}{C_A}$$

• Looking for
$$\frac{C_T^* + C_T'^*}{c_A} \sim 10^{-3}$$

•
$$\delta_b = -1.46(17) \cdot 10^{-3}$$

• Uncertainty $< 2 \cdot 10^{-4}$

Measurements

EXPERIMENTAL STATUS AROUND THE WORLD

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
β spectrum	GT	¹¹⁴ In	MiniBETA-Krakow-Leuven	0.1~%
β spectrum	GT	⁶ He	LPC-Caen	0.1~%
β spectrum	GT	⁶ He, ²⁰ F	NSCL-MSU	0.1~%
β spectrum	GT, F, Mixed	${}^{6}\text{He}$, ${}^{14}\text{O}$, ${}^{19}\text{Ne}$	He6-CRES	0.1~%

^a Experiments specifically searching for time-reversal symmetry violation not listed here

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
$\beta - \nu$	F	^{32}Ar	Isolde-CERN	0.1~%
$\beta - \nu$	F	³⁸ K	TRINAT-TRIUMF	0.1~%
$\beta - \nu$	GT, Mixed	⁶ He, ²³ Ne	SARAF	0.1~%
$\beta - \nu$	GT	⁸ B, ⁸ Li	ANL	0.1~%
$\beta - \nu$	F	²⁰ Mg, ²⁴ Si, ²⁸ S, ³² Ar,	TAMUTRAP-Texas A&M	0.1~%
$\beta - \nu$	Mixed	¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F	Notre Dame	0.5~%
β & recoil	Mixed	³⁷ K	TRINAT-TRIUMF	0.1~%
asymmetry				

^a Experiments specifically searching for time-reversal symmetry violation not listed here

re-

analunia

re-

opolycoic

Mishnayot, Glick-Magid, DG, et al., arXiv:2107.14355 ⁶He

Some Future Opportunities

COULOMB EFFECTS ON THE BETA WAVE FUNCTION

- The energy endpoints of beta decays range a few orders of magnitude.
- Coulomb corrections in beta transitions, which are related to the interference of the beta particle wave function with the atomic wave function, create an effect related to the dimensionless parameter:

$$\frac{\alpha Z}{\left(\frac{p_e}{m_e}\right)} \approx 10^{-4} - 10.$$

This is a significant correction, which is well known for allowed decays.

Jackson, Treiman, Wyld, Nuclear Physics 4 (1957) 206. DG, Glick-Magid (in prep 2023)

COULOMB EFFECTS ON THE BETA WAVE FUNCTION

This effect creates the following effects on the angular correlations and Fierz terms:

$$\begin{split} \xi &= |M_{\rm F}|^2 (|C_{\rm S}|^2 + |C_{\rm V}|^2 + |C'_{\rm S}|^2 + |C'_{\rm V}|^2) \\ &+ |M_{\rm GT}|^2 (|C_{\rm T}|^2 + |C_{\rm A}|^2 + |C'_{\rm T}|^2 + |C'_{\rm A}|^2) \quad (A.3) \end{split}$$
 $a\xi &= |M_{\rm F}|^2 \left\{ [-|C_{\rm S}|^2 + |C_{\rm V}|^2 - |C'_{\rm S}|^2 + |C_{\rm V}|^2] \mp \frac{\alpha Zm}{p_{\rm e}} 2 \operatorname{Im} (C_{\rm S}C_{\rm V}^* + C'_{\rm S}C'_{\rm V}^*) \right\}$ $+ \frac{|M_{\rm GT}|^2}{3} \left\{ [|C_{\rm T}|^2 - |C_{\rm A}|^2 + |C'_{\rm T}|^2 - |C'_{\rm A}|^2] \pm \frac{\alpha Zm}{p_{\rm e}} 2 \operatorname{Im} (C_{\rm T}C_{\rm A}^* + C'_{\rm T}C'_{\rm A}^*) \right\} (A.4)$ $b\xi &= \pm 2\gamma \operatorname{Re} [|M_{\rm F}|^2 (C_{\rm S}C_{\rm V}^* + C'_{\rm S}C'_{\rm V}^*) + |M_{\rm GT}|^2 (C_{\rm T}C_{\rm A}^* + C'_{\rm T}C'_{\rm A}^*)] \quad (A.5)$

This is a small parameter for high energy beta decay endpoints.

But not that small for low-endpoint beta decays:

• ³H - 19 keV:
$$\frac{\alpha Z}{\left(\frac{p_e}{m_e}\right)} > \frac{\alpha Z}{\sqrt{\frac{2E_0}{m_e}}} \approx 0.05$$

$$187 \text{Re} - 2.6 \text{keV}: \frac{\alpha Z}{\left(\frac{p_e}{m_e}\right)} > 6$$

• A linear BSM sensitivity.

DG, Ron, analysis of low energy endpoint beta decay for BSM studies, 2023 (in preparation).

NEAR FUTURE: OPPORTUNITIES IN FORBIDDEN DECAYS

$$\begin{split} \Theta^{J^{A}}\left(q,\vec{\beta}\cdot\hat{\nu}\right) &= \frac{2J+1}{J}\left(1+\delta^{J^{A}}_{\text{Shape}}\right) \cdot \\ \cdot \left\{1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left\{ 1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left\{ 1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left\{ 1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left\{ 1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left. \left\{ 1-\frac{1}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1+\tilde{\delta}^{J^{A}}_{\beta\nu}\right) + \frac{J-1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\text{Shape}}\right)\right\}\left|\left\langle\left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left. \left[\frac{1}{2J+1}\hat{\nu}\left(1+\delta^{J^{A}}_{\beta\nu}\right) + \frac{1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\beta\nu}\right)\right|^{2}\right\}\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left. \left[\frac{1}{2J+1}\hat{\nu}\left(1+\delta^{J^{A}}_{\beta\nu}\right) + \frac{1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\beta\nu}\right)\right|^{2}\right\}\right|^{2} + \mathcal{O}\left(\epsilon^{2J}_{qR}\right) \right. \\ \left. \left. \left[\frac{1}{2J+1}\hat{\nu}\left(1+\delta^{J^{A}}_{\beta\nu}\right) + \frac{1}{2J+1}\left[\beta^{2}-\left(\hat{\nu}\cdot\vec{\beta}\right)^{2}\right]\frac{\epsilon\left(\omega-\epsilon\right)}{q^{2}}\left(1-\delta^{J^{A}}_{\beta\nu}\right)\right|^{2}\right\}\right|^{2} + \mathcal{O}\left(\epsilon^{J^{A}}_{\beta\nu}\right) \right|^{2} + \mathcal{O$$

$$\Theta(q, \vec{\beta} \cdot \hat{\nu}) \propto 1 \pm 2\gamma_0 \frac{C_T + C_T'}{C_A} \frac{m_e}{\epsilon}$$

$$-\frac{1}{5} (2(\hat{\nu} \cdot \vec{\beta}) - (\hat{\nu} \cdot \hat{q})(\vec{\beta} \cdot \hat{q})) (1 - \frac{|C_T|^2 + |C_T'|^2}{|C_A|^2}).$$

$$\propto 1 - (\hat{\beta} \cdot \hat{\nu})^2$$

$$(1 - (\hat{\beta} \cdot \hat{\nu})^2)$$

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)

Unique first forbidden $\Delta J^{\pi} = 2^{-1}$

$$\Theta(q, \vec{\beta} \cdot \hat{\nu}) \propto 1 \pm 2\gamma_0 \frac{C_T + C'_T}{C_A} \frac{m_e}{\epsilon} - \frac{1}{5} \left(2 \left(\hat{\nu} \cdot \vec{\beta} \right) - \left(\hat{\nu} \cdot \hat{q} \right) \left(\vec{\beta} \cdot \hat{q} \right) \right) \left(1 - \frac{|C_T|^2 + |C'_T|^2}{|C_A|^2} \right).$$

$$(\alpha \quad 1 - \left(\hat{\beta} \cdot \hat{\nu} \right)^2$$

Spectrum, i.e., integration over angle. Sensitivity to BSM:

$$\begin{aligned} \frac{dw_{\beta^{\mp}}}{d\epsilon} \propto \Sigma(\epsilon) \left(2 + 4\gamma_0 \frac{C_T + C_T'}{C_A} \frac{m_e}{\epsilon} + \frac{\beta}{5} \frac{(a^2 - 1) \tanh^{-1}(a) + a}{a^2} \right) \\ \times \left(1 - \frac{|C_T|^2 + |C_T'|^2}{|C_A|^2} \right) , \qquad a = \frac{2k\nu}{k^2 + \nu^2}. \end{aligned}$$

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)

Unique first forbidden $\Delta J^{\pi} = 2^{-1}$

Unique possibility to separate between left and right-handed couplings!

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)

Unique First forbidden: Planned ${}^{16}N \rightarrow {}^{16}O$ experiment (SARAF)

$$Q_{\beta} = 10.419 \text{ MeV} \xrightarrow{0.0 \text{ } 1.1 \% \text{ } 4.3}_{68 \% \text{ } 4.5} 2^{-} \frac{(T=0)}{3^{-} (T=0)}_{8.872} \text{ GT (Fermi)}_{6.130}$$

$$Q_{\beta} = 10.419 \text{ MeV} \xrightarrow{0.0 \text{ } 1.1 \% \text{ } 4.3}_{68 \% \text{ } 4.5} 2^{-} \frac{(T=0)}{3^{-} (T=0)}_{6.130} 7.117}_{6.130} \text{ GT}$$

$$\frac{26 \% \text{ } 9.1}{8^{0} 8} 0^{+} \frac{16}{8^{0} 8} 0.0 \text{ unique 1st forbidden } (\Delta J^{\pi} = 2^{-})$$

Ideal case study:

- Experimentally, due to energy separation between its forbidden and allowed branches
- Theoretically, since it is light enough to study *ab-initio*, and since different transitions in the same nucleus allow minimization of nuclear model bias.

OTHER ON GOING EXPERIMENTAL AND THEORETICAL EFFORTS AT HUJI

- Unique first forbidden decay of ⁹⁰Y into ⁹⁰Zr ($Q \approx 2.3 MeV$).
- Electron capture on ¹³¹Cs, as a side-gain from the HUNTER experiment in search of sterile neutrino.
- ⁶He, ¹⁶N, and Neon isotopes beta decays (production @SARAF stage II-2025).

"This could be the discovery of the century. Depending, of course, on how far down it goes."

.. 1 ...

...

SUMMARY

Correcting the *nuclear theory bias with controlled accuracy* is an essential ingredient in the new generation of beta decay precision measurements, already giving stringent constraints on Beyond the Standard Model physics.

