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INTRODUCTION

INTRODUCTION – POSSIBLE REALIZATIONS OF BEYOND THE STANDARD 
MODEL (BSM) EFFECTS AT LOW ENERGY
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INTRODUCTION

INTRODUCTION IN A NUTSHELL
▸ Nuclear phenomena are a “precision frontier” in the search for BSM signatures:

▸ New techniques allow unprecedented experimental precision aiming at 0.1% 
level precision.

▸ Need an accompanying theoretical effort, to provide high precision and 
controlled accuracy predictions, to analyze experimental results and pinpoint new 
physics. 

▸ Constraining extra interaction terms to ≈ 0.1% is probing physics at few 𝐓𝐞𝐕
scale. 

▸ One of the main challenges in increasing theory accuracy is related to the nuclear 
structure.
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INTRODUCTION

SUB-LEADING BSM TENSOR INTERACTION
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BETA DECAYS OBSERVABLES IN ON-GOING EXPERIMENTAL SEARCHES
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Precision Correlation Studies Precision spectrum studies

b decays
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NUCLEAR STRUCTURE EFFECTS IN BETA-DECAYS
▸Nuclear regime effects in the effort to predict beta-decay observables: 

▸nuclear structure corrections to the interaction of the electro-weak probes 
with the nucleus, beyond the leading order approximation of the probes 
interacting with a single nucleon in the nucleus; 

▸a lattice-QCD assessment of nucleon charges, essential to connect nuclear 
observables to quark-level couplings. In particular, the uncertainties in gA, 
gS, and gT, limit the sensitivity to εR, εS, and εT, respectively. 

▸nuclear structure effects in the calculation of radiative corrections, 
particularly the γ-W box; 
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Energy spectrum

Angular correlation

In this talk, I outline a formalism to assess the accuracy of nuclear-structure weak interaction effects in precision β-decay studies, 
and show the detailed studies of 6He (and 23Ne). 

Holstein (70’s), Behrens & Bühring (70’s), Hayen, Young (2021). Cirigliano, DG et al., arXiv:1907.02164v2 (2019) 
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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(
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T |2
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)
, and b = 2 CT +C ′

T
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′
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C A

me
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)
−

(
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))(

1 − |CT |2 + |C ′
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|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)
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2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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
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+
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate
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7, 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑
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(
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± q̂ ·
(
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)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)
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− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me
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− 1
5

(
2
(
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)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂
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)]∑

J≥1
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+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
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)( !β · q̂
)]
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+
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− 2q̂ ·
(
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)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
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−
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(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
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




[
1 −

(
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)

± q̂ ·
(
ν̂ − !β

)∑

J≥1
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+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)
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)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = 6
7, 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:  

Assuming V-A+c*T structure (for pure axial transition)

Glick-Magid, DG (JPhG 2022, PRD, in press, 2023)



C
V
0

{L,E}
A
1

Ĉ
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0

��� Ji
E���

2

+
|CA|

2 +
���C

0

A

���
2

2
3


1 + �

1+

1 �
1

3

⇣
1 + �

1+

�⌫

⌘
⌫̂ · ~�

� ���
D
Jf

���L̂A
1

��� Ji
E���

2

9
>=

>;
+O

�
q
2
�

�
0+

1 = �
⌫ + k2

✏

q
2Re

D
Jf

���L̂V
0

��� Ji
E

D
Jf

���ĈV
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e.g., allowed transitions

Fermi

Gamow-Teller

Correlation coefficient

Neglected are all finite momentum transfer terms, i.e., nuclear physics is neglected. 

Δ𝐽& = 0,1'



C
V
0

{L,E}
A
1

Ĉ
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Δ𝐽& = 0,1'

Assuming V+T structure
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e.g., allowed transitions

Fermi

Gamow-Teller

Correlation coefficient

Neglected are all finite momentum transfer terms and other nuclear corrections. 

Δ𝐽& = 0,1'
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e.g., pure GT transitions Δ𝐽! = 1"

𝑑𝜔 ∝ 1 + 𝑎!"𝛽 ⋅ 𝜈̂ + 𝑏#
𝑚$

𝜖

𝑎!" = −
1
3 1 + 𝛿% +

&V W' &V
X W

( &Y W

𝑏# = 0 + 𝛿) +
𝐶*∗ + 𝐶*,∗

𝐶-

GT
SM (nuclear) 
correction

BSM 
signature

Correlation coefficient

Terms with Fierz-like spectral behavior

Naïvely, the correlation coefficient has quadratically weaker sensitivity to BSM terms. 
However…
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e.g., pure GT transitions Δ𝐽! = 1"

𝑑𝜔 ∝ 1 + 𝑎!"𝛽 ⋅ 𝜈̂ + 𝑏#
𝑚$

𝜖

𝑎!" = −
1
3 1 + 𝛿% +

&V W' &V
X W

( &Y W

𝑏# = 0 + 𝛿) +
𝐶*∗ + 𝐶*,∗

𝐶-

Correlation coefficient

Terms with Fierz-like spectral behavior

Since 1!
2

≈ 𝟎. 𝟎𝟏 − 𝟏𝟎, this creates a linear sensitivity to BSM signatures even 

in the angular coefficients, albeit (usually) suppressed compared to 𝑏3.

Measured correlation coefficient:  𝑎#$
%&'()*&+ = 𝑎#$ ⋅ 1 + 𝑏,

𝑚&

𝜖 &-.&*/%&01

23

DG, Ron (in prep. 2023)
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Small parameter #1: 𝜖4 =
45
ℏ7
≈ 1028 - multipole expansion

Small parameter #2: 𝜖9,: ≈ 0.1 − 0.4 - systematic uncertainty in the nuclear model.

Small parameter #3: 𝜖;5 =
<!"#$%&!

=
≈ 0.05 − 0.2 Non-relativistic expansion of currents.

Small parameter #4: 𝜖*&7>/? =
4
=
≈ 0.002 nucleaon recoil.

Small parameter #5: 𝜖! =
@4
%'
( ≈ 102A Pseudo-scalar poles.

Small parameter #7: 𝜖=>+&? is related to the implementation of the Nuclear Model

For precision beta decays, at least the leading correction need to be calculated explicitly to reach experimental 
sensitivity. 

Small parameter #6: 𝜖D = 𝛼𝑍8 ≈ 104# − 1 Coulomb corrections.

Small parameter #8: 𝜖(>?B&* numerical error in the solution of the Schrödinger equation



SHAPE AND RECOIL CORRECTIONS

32

These are nuclear structure dependent corrections, beyond the leading usual 
elementary particle zero momentum transfer approach.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞+

∝ 𝑞+(*

∝ 𝑞+

≈
𝑱

𝑱 + 𝟏
'𝑬𝑱𝑴

𝜖) =
𝑞𝑅
ℏ𝑐 ≈ 0.005 − 0.1

Natural kinematical suppression 
of the correction!
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞+

∝ 𝑞+(*

∝ 𝑞+

≈
𝑱

𝑱 + 𝟏
'𝑬𝑱𝑴

𝜖) =
𝑞𝑅
ℏ𝑐 ≈ 0.005 − 0.1

1
2𝐽 + 1 !!

These are nuclear structure dependent corrections, beyond the leading usual 
elementary particle zero momentum transfer approach.

Natural kinematical suppression 
of the correction!
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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∝ 𝑞+(*

∝ 𝑞+

≈
𝑱

𝑱 + 𝟏
'𝑬𝑱𝑴

In beta decays, shape corrections are few per-milles, thus the first
correction should be calculated explicitly to reach needed accuracy

These are nuclear structure dependent corrections, beyond the leading usual 
elementary particle zero momentum transfer approach.

Analyze Nuclear-probe coupling 

operators scaling, to understand

how explicit NME calculation 

increases accuracy
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SHAPE AND RECOIL CORRECTIONS
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These are nuclear structure dependent corrections.

Needed accuracy of the calculation ≈ 10(4 − 10(5

This dictates the number of corrections needed to be calculated explicitly.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
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−
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1 − |CT |2 + |C ′
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|C A |2
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.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞+

∝ 𝑞+(*

∝ 𝑞+

≈
𝑱

𝑱 + 𝟏
'𝑬𝑱𝑴

In beta decays, shape corrections are few per-milles, thus the first
correction should be calculated explicitly to reach needed accuracy

Exchange 

currents



EFFECTIVE FIELD THEORY FOR THE NUCLEAR-PROBE INTERACTION

▸ EFT expansion parameter 𝜖9,: ∝
CDE(4,H,… )

=*+
≈ 3

3K
− 3
L

:

▸ Breakdown scale in chiral EFT is about 4𝜋𝑓! ≈ 1 GeV/c

▸ Order by order expansion of the currents:
𝐽!" = 𝐽#$ + 𝜖%&' ⋅ 𝐽(#$ + 𝜖%&') 𝐽(!#$ 𝑤𝑖𝑡ℎ 𝑎 > 1

▸LO – single nucleon current

▸NLO – corrections to single nucleon currents 

▸NLO  or higher orders include 2-body currents (magnetic –𝑁𝐿𝑂, 
weak axial –𝑁*/,÷.𝐿𝑂)
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Pavon Valderama, Phillips; PRL (2015)
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Gamow-Teller

Shape

Angular 
correlation

Induced Fierz-like
spectral correction



Δ𝑀 ≈
<HE

=! <LI

𝑑𝜔 ∝ %1 + 𝑎+,𝛽 ⋅ 𝜈̂ + 𝑏-
'!
.

/Li 10 1𝐿12 /He 00
3

1 + 𝛿1

− 1
4
1 + 𝛿5

0 + 𝛿6

‣ 𝛿* = 𝑓*
9:"#

;<"#
,

=,"$

;<"#
+ 𝒪 %&'(

") , 𝜖>
?

1𝐿12 ~ 1

Glick-Magid & DG (JPhG 2022)

𝜖78 ≡
9"!#$%
'&

≈ 2 ⋅ 10:1

𝜖)* ≡ 𝑞𝑅 ≈ 5 ⋅ 10:3
𝜖+ ≡ 𝛼𝑍; ≈ 2 ⋅ 10:3

𝜖<=>?@A ≡ &
'&

≈ 4 ⋅ 10:4

Gamow-Teller

𝛽 energy 
spectrum 
(shape)

Angular 
correlation

Induced 
Fierz-like 
spectral 

term
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Nuclear matrix elements
ab initio No

Core Shell Model (NCSM)

𝜓M 3𝑂N 𝜓/

3𝑂N
Nuclear wave functions Multipole operators

Nuclear currents
at LO (1-body currents)

5𝒥 𝑥⃗

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

Observables’ corrections

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

𝑑𝜔 ∝ 1 + 𝑎,-𝛽 ⋅ 𝜈̂ + 𝑏.
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𝜖
𝜓; 𝐿̂0 𝜓!

1
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Nuclear Hamiltonian 
𝐍𝟐𝐋𝐎𝐨𝐩𝐭 (𝐬𝐚𝐭)

9𝐻 𝑥⃗



Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)
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Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI
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1



Electro-magnetic transitions

Pastore et al., PRC87 035503 (2013)
Friman-Gayer et al., PRL126 102501 (2021)

/Li 00 → 10 : 𝐵 𝑀1 =
1
3

H𝑀1
B 3

𝐺𝑇 /He =
12𝜋
𝑔2

1𝐿12
3

2b: ;𝐿12 , 9𝐶12 ~ 𝑓𝑒𝑤 %~ 𝒪 𝜖CD%1.FG:42b: =𝑀1B ~ 10%~ 𝒪 𝜖CD%

ESTIMATING 𝜖J3K IN A SPECIFIC CASE: AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

𝜖>?& ∼ 15%

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)



Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI
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‣ Experiments are aiming at ~few 0.1% 
precision.

‣ 𝑎!" = − .
/
1 + 5𝛿% + `V

Wa `V
X W

W `Y
W

<HE → <LI ANGULAR CORRELATION

BSMGT SM 
correction

Johnson et al., Phys.Rev.132.3; Gluck, Nucl.Phys.A628;
Gonzalez-Alonso & Naviliat-Cuncic, Phys.Rev.C94
Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, PLB 2022
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‣ The spectrum is used to find induced Fierz-like behavior 
term

𝑏: = 0+ 𝛿; +
𝐶<∗ + 𝐶<>∗

𝐶?
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∗A@0

2∗
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~ 10BC

‣ 𝛿; = −1.46 17 ⋅ 10BC

‣ Uncertainty < 2 ⋅ 10BD

BSMSM 
correctionGT

𝛿 2

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil (PLB 2022)

<HE → <LI INDUCED FIERZ-LIKE SPECTRAL TERM
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SARAF: measuring 34Ne’s branching 
ratio with a ~ 0.5% uncertainty

KLNE → KLNA

Mishnayot, Glick-Magid, DG, et al., arXiv:2107.14355 (2021)

Gamow-
Teller
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Shell Model (NCSM)
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Nuclear wave functions Multipole operators

Nuclear currents
at LO (1-body currents)
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Observables’ corrections
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Nuclear Hamiltonian 
USDB (USD) ~10% 
uncertainty

9𝐻 𝑥⃗

https://arxiv.org/abs/2107.14355v1
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NEW OPPORTUNITY IN BETA DECAYS WITH VERY LOW ENERGY ENDPOINTS

COULOMB EFFECTS ON THE BETA WAVE FUNCTION
▸ The energy endpoints of beta decays range a few orders of magnitude. 

▸Coulomb corrections in beta transitions, which are related to the interference 
of the beta particle wave function with the atomic wave function, create an 
effect related to the dimensionless parameter:

▸ This is a significant correction, which is well known for allowed decays.

51

Jackson, Treiman, Wyld, Nuclear Physics 4 (1957) 206.

DM
34
54

≈ 1045 − 10.

DG, Glick-Magid (in prep 2023)



NEW OPPORTUNITY IN BETA DECAYS WITH VERY LOW ENERGY ENDPOINTS

COULOMB EFFECTS ON THE BETA WAVE FUNCTION
▸ This effect creates the following effects on the angular correlations and Fierz terms:

This is a small parameter for high energy beta decay endpoints.

▸ But not that small for low-endpoint beta decays:

▸ 3H – 19 keV: DM34
54

> DM
678
54

≈ 0.05

▸ 187Re – 2.6keV: 𝜶𝒁𝒑𝒆
𝒎𝒆

> 𝟔

▸ A linear BSM sensitivity.  

52

DG, Ron, analysis of low energy endpoint beta decay for BSM studies, 2023 (in preparation).



NEAR FUTURE: OPPORTUNITIES IN FORBIDDEN DECAYS

Unique first forbidden  Δ𝐽& = 2(

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5
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2
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−
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)( !β · q̂
))(

1 − |CT |2 + |C ′
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|C A |2
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(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
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interference term b, since
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The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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(〈‖Ĉ A

2 ‖〉
〈‖L̂ A

2 ‖〉

}

, (13)
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3
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(14)

where the superscript A (V ) denotes multipole operators calcu-
lated with the axial-vector (polar-vector) symmetry contribution to 
the weak nuclear current. Ordering the multipoles by their qR de-
pendence, we see that L̂ A

2 is O(qR), while Ĉ A
2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ + 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A

i=1 τ−
i

[
δµ0 J 0

i,1b − δµk Jk
i,1b

]
δ(r − ri), where 

τ− = 1
2 (τ x − iτ y) is the isospin lowering operator, that turns a 

neutron into a proton, has temporal and spatial parts in momen-
tum space:

J 0
i,1b(p2) = 1 − g A

P · σ i

2m
, (15)

Ji,1b(p2) = g A σ i + iκV
σ i × p

2m
, (16)

where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:

dwβ∓

dε
∝ +(ε)

(

2 + 4γ0
CT + C ′

T

C A

me

ε
+ β

5
(a2 − 1) tanh−1(a) + a

a2

×
(

1 − |CT |2 + |C ′
T |2

|C A |2

))

, (17)

where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.

A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288 287

d5ωβ∓

d#k/4πd#ν/4πdε
= 2G2

π2

1
2 J i + 1

(ε0 − ε)2kε F ±(Z f ,ε)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂· $β)ν̂ · $β

+ 1
5

(
ν̂ · q̂

)( $β · q̂
)]

〈‖L̂ A
2 ‖〉2

}
, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ε

q
(〈‖M̂ V

2 ‖〉
〈‖L̂ A

2 ‖〉
− ν + k2

ε

q
(〈‖Ĉ A
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is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
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cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
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PRECISION B-DECAY STUDIES TO PINPOINT BSM EFFECTS 55

Unique first forbidden  Δ𝐽& = 2(

A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288 287

d5ωβ∓

d#k/4πd#ν/4πdε
= 2G2

π2

1
2 J i + 1

(ε0 − ε)2kε F ±(Z f ,ε)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂· $β)ν̂ · $β

+ 1
5

(
ν̂ · q̂

)( $β · q̂
)]

〈‖L̂ A
2 ‖〉2

}
, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ε

q
(〈‖M̂ V

2 ‖〉
〈‖L̂ A

2 ‖〉
− ν + k2

ε

q
(〈‖Ĉ A
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rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
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A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
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T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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and can be easily calculated, albeit introduce a dependence on a 
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a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
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Including radiative and recoil corrections is expected to allow a 
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rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
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lated with the axial-vector (polar-vector) symmetry contribution to 
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2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
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of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ + 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
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is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
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0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
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where the superscript A (V ) denotes multipole operators calcu-
lated with the axial-vector (polar-vector) symmetry contribution to 
the weak nuclear current. Ordering the multipoles by their qR de-
pendence, we see that L̂ A

2 is O(qR), while Ĉ A
2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ + 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A
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δ(r − ri), where 
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where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.
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Unique possibility to separate between left and right-handed couplings!

Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)



Ideal case study:

- Experimentally, due to energy separation between its forbidden and allowed branches

- Theoretically, since it is light enough to study ab-initio, and since different transitions in the 
same nucleus allow minimization of nuclear model bias.

BSM

unique 1st forbidden (∆𝐽" = 2:)

GT (Fermi)
GT

Unique First forbidden: Planned efN → efO experiment (SARAF) 

Ohayon, Chocron, DG, et al., Hyp.Int.239,57 (2018)

https://link.springer.com/article/10.1007%2Fs10751-018-1535-x


OTHER ON GOING EXPERIMENTAL AND THEORETICAL EFFORTS AT HUJI

‣ Unique first forbidden decay of 90Y into 90Zr (𝑄 ≈ 2.3 𝑀𝑒𝑉).

‣ Electron capture on 131Cs, as a side-gain from the HUNTER experiment in 
search of sterile neutrino.

‣ 6He, 16N, and Neon isotopes beta decays 
(production @SARAF stage II-2025).
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SUMMARY

58

Correcting the nuclear theory bias with controlled accuracy is an essential ingredient in the new generation of  beta 
decay precision measurements, already giving stringent constraints on Beyond the Standard Model physics. 

Future experiments aim at <0.1% precision, which is 
sufficient to significantly identify BSM signatures at the few 
TeV scale

BSM bias for new 

physics at few TeV

Nuclear structure corrections


