Allowed and forbidden β-decays in ongoing BSM precision searches

Ayala Glick-Magid

W UNIVERSITY of WASHINGTON

PAINT 2023

Allowed and forbid Matters, incertainty Matters, Jucclear Uncertainty Incertainty Store St

Ayala Glick-Magid

W UNIVERSITY of WASHINGTON

PAINT 2023

Also Matter!

Hebrew University Doron Gazit Guy Ron Hitesh Rahangdale Vishal Srivastava

TRIUMF Petr Navrátil Peter Gysbers Lotta Jokiniemi

Chalmers University Christian Forssén

ÚJF rez Daniel Gazda

University of Barcelona Javier Menéndez

NCSU Leendert Hayen LLNL Nicholas Scielzo Yonatan Mishnayot Jason Harke Aaron Gallant Richard Hughes

SARAF (SOREQ)

Sergey Vaintraub Tsviki Hirsh Leonid Waisman Arik Kreisel Boaz Kaizer Hodaya Dafna Maayan Buzaglo

ETH Zurich Ben Ohayon

Weizamnn Institute Michael Hass

Ministry of Science and Technology, Israel Israeli Science Foundation (ISF) European Research Council (ERC)

Standard Model (SM)

Fundamental Forces **Elementary Particles** Electromagnetic three generations of matte (fermions) 111 11 0.511 MeV/o 105.67 MeV/c³ 1.7768 GeV/c μ τ LEPTONS 1/2 1/2 1/2 electron muon tau electron <10⁻¹⁶cm <15.5 MeV/c1 <2.2 eV/c <1.7 MeV/c Ve ο_{1/2} νμ 1/2 1/2 electron muon tau neutrino neutrino proton Weak =2.4 MeV/c1 (neutron) =1.275 GeV/c² =172.44 GeV/c 2/3 2/3 2/3 quark <10⁻¹⁶cm u t 1/2 C 1/2 1/2 QUARKS charm up top nucleus =4.8 MeV/c =95 MeV/c¹ ×4.18 GeV/c² -1/3 1/2 d -1/3 -1/3 ~10⁻¹²cm -1/3 1/2 b -1/3 1/2 S atom~10⁻⁸cm Strong 10-13 cm down strange bottom

BSM Searches

The **Neutrino** has mass, even though according to the SM it should not (interacts only through the **Weak** interaction)

Beyond Standard Model (BSM)

Deviations from the SM at high precision:

First results from Fermilab's Muon g-2 experiment strengthen evidence of new physics

Searches for BSM physics

High energy frontier

Lucas Taylor / CERN - http://cdsweb.cem.ch/record/628469 © 1997-2022 CERN (License: <u>CC-BY-SA-4.0</u>) LHC

TeV scale <

Astronomical frontier

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB © ESA and the Planck Collaboration (License: <u>CC-BY-SA-4.0</u>)

Precision frontier

BSM Searches

Mardor et al., Eur. Phys. J.A 54, 91 (2018)

Nuclear phenomena
→ 10⁻³ precision level
new experiments

Nuclear structure challenge? Doron: Nuclear theory can do that

Weak interactionLow energy reaction of
leptons with nucleonsW Propagator:
 $\frac{g_{\mu\nu}}{q^2 + M_W^2} \rightarrow \frac{g_{\mu\nu}}{M_W^2} \rightarrow \frac{g_{\mu\nu}}{M_W^2}$ $\bigvee \psi^{\pm}, \Xi \bigvee N$ $q \ll M_W$

Weak interaction

BSM Searches

Theory: C.N. Yang and T.D. Lee (Nobel 1957)

Experiment: C.S. Wu: Parity violation in *nuclear* β -decays

 \Rightarrow Weak SM structure: "V – A"

The SM is incomplete

>> Ongoing searches for C_S, C_P, C_T in precision *nuclear* β -decay experiments

Nuclear β -decay

BSM Searches

Nuclear β -decay

BSM Searches

Standard Model high order corrections

Identifying small parameters

> Kinematic parameters - β -decays have low momentum transfer:

* For an endpoint of $\sim 2 MeV$

- $\blacktriangleright \epsilon_{qr} \sim qR \approx 0.01 A^{1/3} *$
- $\blacktriangleright \epsilon_{\text{recoil}} \sim \frac{q}{m_N} \approx 0.002 *$
- The Coulomb force:
 - $\blacktriangleright \epsilon_c \qquad \sim \alpha Z \qquad \approx 0.007 Z$
- The nuclear model:

 $\epsilon_{\rm NR} \sim \frac{P_{\rm fermi}}{m_N} \approx 0.2$

 $ightarrow \epsilon_{\rm EFT} \sim 0.1$

Numeric calculation:

ϵ_{solver}

AGM & Gazit, J.Phys.G 49 105105 (2022)

 $P_{\rm fermi}$ - Fermi momentum α - fine structure constant Z - final nucleus's charge

q - momentum transfer R - nucleus's radius m_N - nucleon's mass

SM corrections

 $\epsilon_{\rm NR} \sim \frac{P_{\rm fermi}}{m_N} \approx 2 \cdot 10^{-1}$ e.g., $\triangleright \beta$ -decay rate: Gamow-Teller $\frac{\epsilon_{\rm EFT}}{\epsilon_{qr}} \sim 1 \cdot 10^{-1}$ $\frac{\epsilon_{qr}}{\epsilon_{qr}} \sim qR \approx 5 \cdot 10^{-2}$ $d\omega \propto \left| \left\langle \psi_f \right\| \widehat{H}_W \| \psi_i \right\rangle \right|^2 \quad \propto \quad 1 + a_{\beta\nu} \vec{\beta} \cdot \hat{\nu} + b_F \frac{m_e}{F}$ $\epsilon_c \sim \alpha Z_f \approx 2 \cdot 10^{-2}$ $\epsilon_{\rm recoil} \sim \frac{q}{m_N} \approx 4 \cdot 10^{-3}$ Fierz Angular correlation term Multipole Expansion SM correction SM $-\frac{1}{3}(1+\delta_a)$ SM ↓ SM SM ↓ correction Multipole operator's matrix elements General Theory - $0 + \delta_h$ between the nuclear states for any nucleus & $\blacktriangleright \delta_b = f_b \left(\frac{\langle \psi_f \| \hat{c}_J^A \| \psi_i \rangle}{\langle \psi_f \| \hat{L}_J^A \| \psi_i \rangle}, \frac{\langle \psi_f \| \hat{M}_J^V \| \psi_i \rangle}{\langle \psi_f \| \hat{L}_J^A \| \psi_i \rangle} \right) + \mathcal{O}\left(\frac{\epsilon_{qr}^2}{15}, \epsilon_c^2 \right)$ transition $\sim 5 \cdot 10^{-4}$ $\sim \epsilon_{\rm NR} \epsilon_{qr}$, $\epsilon_{\rm recoil} \sim 10^{-2}$ AGM & Gazit, J.Phys.G 49 105105 (2022)

SM corrections

Measurements

Measurements

Experimental status over the world

Energy spectrum - b_F

TABLE III. List of nuclear β -decay spectral measurements in search for non-SM physics ^a

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
β spectrum	GT	¹¹⁴ In	MiniBETA-Krakow-Leuven	0.1 %
β spectrum	GT	6 He	LPC-Caen	0.1~%
β spectrum	GT	⁶ He, ²⁰ F	NSCL-MSU	0.1 %
β spectrum	GT, F, Mixed	${}^{6}\text{He}$ ${}^{14}\text{O}$, ${}^{19}\text{Ne}$	He6-CRES	0.1 %

Angular correlation - $a_{\beta\nu}$

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
$\beta - \nu$	F	³² Ar	Isolde-CERN	0.1 %
$\beta - \nu$	F	³⁸ K	TRINAT-TRIUMF	0.1 %
$\beta - \nu$	GT, Mixed	⁶ He ²³ Ne	SARAF	0.1 %
$\beta - \nu$	GT	⁸ B, ⁸ Li	ANL	0.1 %
$\beta - \nu$	F	²⁰ Mg, ²⁴ Si, ²⁸ S, ³² Ar,	TAMUTRAP-Texas A&M	0.1 %
$\beta - \nu$	Mixed	¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F	Notre Dame	0.5 %
$\beta \&$ recoil	Mixed	³⁷ K	TRINAT-TRIUMF	0.1 %
asymmetry				

TABLE I. List of nuclear β -decay correlation experiments in search for non-SM physics ^a

Ab initio calculations of ${}^{6}\text{He} \xrightarrow{\beta^{-}}{}^{6}\text{Li}$

 $^{6}\text{He} \rightarrow {}^{6}\text{Li}$

⁶He \rightarrow ⁶Li β -energy spectrum

Measurements

AGM, Forssén, Gazda, Gazit, Gysbers & Navrátil, Phys.Lett.B 832 137259 (2022)

PHYSICAL REVIEW LETTERS 129, 182502 (2022)

β -Nuclear-Recoil Correlation from ⁶He Decay in a Laser Trap

P. Müller[®],¹ Y. Bagdasarova,² R. Hong[®],² A. Leredde,¹ K. G. Bailey,¹ X. Fléchard,³ A. García[®],²
B. Graner,² A. Knecht[®],^{2,4} O. Naviliat-Cuncic[®],^{3,5} T. P. O'Connor,¹ M. G. Sternberg[®],² D. W. Storm,² H. E. Swanson[®],² F. Wauters[®],^{2,6} and D. W. Zumwalt²

$$\hat{a} = -0.3268(46)_{\text{stat}}(41)_{\text{syst}}.$$
 (4)

Assuming tensor contributions with right-handed neutrinos (b = 0 or $\tilde{C}_T = -\tilde{C}'_T$) the result above implies $|\tilde{C}_T|^2 \leq 0.022$ (90% C.L.) On the other hand, assuming purely left-handed neutrinos ($\tilde{C}_T = +\tilde{C}'_T$) yields

 $0.007 < \tilde{C}_T < 0.111 \ (90\% \text{ C.L.}).$ (5)

Experimental status over the world

Energy spectrum - b_F

TABLE III. List of nuclear β -decay spectral measurements in search for non-SM physics ^a

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
β spectrum	GT	¹¹⁴ In	MiniBETA-Krakow-Leuven	0.1 %
β spectrum	GT	⁶ He	LPC-Caen	0.1~%
β spectrum	GT	⁶ He, ²⁰ F	NSCL-MSU	0.1 %
β spectrum	GT, F, Mixed	6 He, 14 O, 19 Ne	He6-CRES	0.1 %

Angular correlation - $a_{\beta\nu}$

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
$\beta - \nu$	F	³² Ar	Isolde-CERN	0.1 %
$\beta - \nu$	F	³⁸ K	TRINAT-TRIUMF	0.1 %
$\beta - \nu$	GT, Mixed	⁶ He ²³ Ne	SARAF	0.1 %
$\beta - \nu$	GT	⁸ B, ⁸ Li	ANL	0.1 %
$\beta - \nu$	F	²⁰ Mg, ²⁴ Si, ²⁸ S, ³² Ar,	TAMUTRAP-Texas A&M	0.1 %
$\beta - \nu$	Mixed	¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F	Notre Dame	0.5 %
β & recoil	Mixed	³⁷ K	TRINAT-TRIUMF	0.1 %
asymmetry				

TABLE I. List of nuclear β -decay correlation experiments in search for non-SM physics ^a

Measurements

Cirigliano et al., arXiv:1907.02164v2 (2019)

$^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson et al., PhysRev132.2239 (1963)

$^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson et al., PhysRev132.2239 (1963)

Constraining $a_{\beta\nu} \& b_F$ simultaneously

Mishnayot, AGM, Forssén, Gazda, Gazit, Gysbers, Menéndez & Navrátil, et al., arXiv:2107.14355

$^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson et al., PhysRev132.2239 (1963)

New constraints on the existence of exotic Tensor interactions

$$\frac{C_T^+}{C_A} = 0.0007 \pm 0.0049 \qquad \frac{C_T^-}{C_A} = 0.0001 \pm 0.0823$$

Mishnayot, AGM, Forssén, Gazda, Gazit, Gysbers, Menéndez & Navrátil, et al., arXiv:2107.14355

New opportunity: BSM missing theory

SM multipole expansion

BSM missing theory

BSM multipole expansion

BSM missing theory

Tensor \rightarrow vector-like objects

 $\begin{aligned} \widehat{\mathcal{H}}_W &\sim \mathcal{C}_{\mathrm{T}} \ \widehat{\jmath}^{\mu\nu}_{}(\vec{x}) \ \widehat{\jmath}^{T}_{\mu\nu}_{}(\vec{x}) \\ &\swarrow \\ &\swarrow \\ \text{Lepton} \\ \text{current} \\ \text{current} \end{aligned}$

Tensor interactions

- Symmetric:
 - A space-time-metric and the stress-energy tensor
- Antisymmetric
 - Fermionic probes

 $\Rightarrow l_{00} = 0$ $\Rightarrow l_{.0} = -l_{0.}$ $\Rightarrow l_{ij} \rightarrow [l_{ij}]^{(1)}$

BSM missing theory

AGM & Gazit, arXiv:2207.01357, in press. Phys. Rev. D (2023)

Tensor \rightarrow vector-like objects

Tensor "vector-like" multipole operators with an identified parity

BSM missing theory

BSM missing theory

AGM & Gazit, arXiv:2207.01357, in press. Phys. Rev. D (2023)

BSM missing theory

BSM predictions: unique 1st-forbidden decay $d\omega \propto 1 + a_{\beta\nu} \left[1 - \left(\hat{\beta} \cdot \hat{\nu}\right)^2 \right] + b_F \frac{m_e}{\epsilon}$

The β -energy spectrum is sensitive to both $a_{\beta\nu} \& b_F$

- > Allows simultaneous extraction of C_T^+ and C_T^-
- Increases the accuracy level

Formalism is nice, but applications are nicer...

AGM et al., Phys.Lett.B 767 285-288 (2017)

Unique 1st-forbidden experiments

PHYSICAL REVIEW C 105, 054312 (2022)

Determination of β-decay feeding patterns of ⁸⁸Rb and ⁸⁸Kr using the Modular Total Absorption Spectrometer at ORNL HRIBF

P. Shuai , ^{1,2,3,4} B. C. Rasco, ^{1,2,3,*} K. P. Rykaczewski, ² A. Fijałkowska, ^{5,3} M. Karny, ^{5,2,1} M. Wolińska-Cichocka, ^{6,2,1} R. K. Grzywacz, ^{3,2,1} C. J. Gross, ² D. W. Stracener, ² E. F. Zganjar, ⁷ J. C. Batchelder, ^{8,1} J. C. Blackmon, ⁷ N. T. Brewer, ^{1,2,3} S. Go, ³ M. Cooper, ³ K. C. Goetz, ^{9,3} J. W. Johnson, ² C. U. Jost, ² T. T. King, ² J. T. Matta, ² J. H. Hamilton, ¹⁰ A. Laminack, ² K. Miernik, ⁵ M. Madurga, ³ D. Miller, ^{3,11} C. D. Nesaraja, ² S. Padgett, ³ S. V. Paulauskas, ³ M. M. Rajabali, ¹² T. Ruland, ⁷ M. Stepaniuk, ⁵ E. H. Wang, ¹⁰ and J. A. Winger¹³

⁸⁸ Rb decay spectra suggests that MTAS can distinguish an allowed β spectral shape from a first forbidden unique β spectral shape.

BSM missing theory

- Experiments are aiming an accuracy of 10⁻³
- > SM: Theory with controlled level of accuracy
 - Experiments become useful!
- \triangleright ⁶He Corrections with an uncertainty of 10^{-4}
- ²³Ne with experimental results
 - New bounds on BSM Tensor interactions
- The BSM missing theory
 - Uses the already-known SM matrix elements
 - Unique 1st Forbidden decays as a new opportunity

Gives significant constraints even for the naivest nuclear calculations

Can be done to any nucleus & decay (allowed/forbidden)

Paving the way for new, even higher precision experiments and discoveries

- Ongoing 1st Forbidden experiments @SARAF (¹⁶N, ⁹⁰Sr), @ORNL (⁸⁸Rb)
 - Ab initio NCSM Calculations for ¹⁶N
- Beyond the impulse approximation
 - Calculating 2-body currents and increasing the theory accuracy

Summary

Thanks!

Hebrew University Doron Gazit Guy Ron Hitesh Rahangdale Vishal Srivastava

TRIUMF Petr Navrátil Peter Gysbers Lotta Jokiniemi

Chalmers University Christian Forssén

ÚJF rez Daniel Gazda

University of Barcelona Javier Menéndez

NCSU Leendert Hayen LLNL Nicholas Scielzo Yonatan Mishnayot Jason Harke Aaron Gallant Richard Hughes

SARAF (SOREQ)

Sergey Vaintraub Tsviki Hirsh Leonid Waisman Arik Kreisel Boaz Kaizer Hodaya Dafna Maayan Buzaglo

ETH Zurich Ben Ohayon

Weizamnn Institute Michael Hass

Ministry of Science and Technology, Israel Israeli Science Foundation (ISF) European Research Council (ERC)