发TRIUMF

Standard Model corrections to Fermi decays in NCSM

Michael Gennari

TRIUMF and University of Victoria

Research supervisor: Petr Navrátil

Collaborators: Mehdi Drissi, Chien-Yeah Seng, Misha Gorchtein

V_{ud} element of CKM matrix

	$\left\|V_{u d}\right\|$
superallowed	$0.97373(31)^{19}$
n	$0.97377(90)^{20}$
nuclear mirror	$0.9739(10)^{21}$
$\pi_{e 3}$	$0.9740(28)^{22}$

	$\left\|V_{u s}\right\|$			
$K_{\ell 3}$	$0.22309(56)^{23}$			
τ	$0.2221(13)^{24}$			
Hyperon	$0.2250(27)^{25}$			
:---:	:---:			
$K_{\mu 2} / \pi_{\mu 2}$	$0.23131(51)^{23}$			
$K_{\ell 3} / \pi_{e 3}$	$0.22908(87)^{23}$			

$$
\left|0^{+}\right\rangle \rightarrow\left|0^{+}\right\rangle
$$

Fig. 1. A combined plot of $\left|V_{u d}\right|$ from superallowed decays (red band), $\left|V_{u s}\right|$ from $K_{\ell 3}$ (blue band), $\left|V_{u s} / V_{u d}\right|$ from $K_{\mu 2} / \pi_{\mu 2}$ (green band) and the SM unitarity requirement (black line).

$V_{u d}$ element of CKM matrix

$$
\mathcal{L}_{c c}=-\frac{g}{\sqrt{2}}\left(\overline{\bar{L}}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \gamma^{\mu} W_{\mu}\left(V_{C K M}\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\right.\text { h.c. }
$$

- Precise V_{ud} from super-allowed Fermi transitions [1-2]

$$
\left|V_{u d}\right|^{2}=\frac{\hbar^{7}}{G_{F}^{2} m_{e}^{5} c^{4}} \frac{\pi^{3} \ln (2)}{\mathcal{F} t\left(1+\Delta_{R}^{V}\right)}
$$

$G_{F} \equiv$ Fermi coupling constant determined from muon β decay

- hadronic matrix elements modified by nuclear environment
- Fermi matrix element renormalized by isospin non-conserving forces

$$
\mathcal{F} t=f t\left(1+\delta_{R}^{\prime}\right)\left(\underline{1-\delta_{C}+\delta_{N S}}\right)
$$

- Dispersion integral approach gives $(2-3) \sigma$ discrepancy [3-4]

Corrections to Fermi transitions

$$
\mathcal{F} t=f t\left(1+\delta_{R}^{\prime}\right)\left(\underline{1-\delta_{C}+\delta_{N S}}\right)
$$

Historical treatment (Hardy and Towner)

- $\delta_{\text {NS }}$ from shell model and approximate single-nucleon currents
- δ_{C} from shell model with Woods-Saxon potential
- Dominant approach for three decades [5]

Evaluate SM corrections with ab initio NCSM

$$
{ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}
$$

- Tree level beta decay amplitude

$$
M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)
$$

- Hadronic correction in forward scattering limit

$$
\delta M=-i \sqrt{2} G_{F} e^{2} L_{\lambda} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{\epsilon^{\mu \nu \alpha \lambda} q_{\alpha}}{\left[\left(p_{e}-q\right)^{2}-m_{e}^{2}\right] q^{2}} \underline{T_{\mu \nu}\left(p^{\prime}, p, q\right)}
$$

$$
\delta M=\square_{\gamma W}\left(E_{e}\right) M_{\text {treee }}
$$

Calculating T_{3} in the NCSM for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$

1) FT currents into momentum space
2) Multipole expansion
3) General electroweak basis of operators [6]

$$
\begin{aligned}
& T_{3}\left(q_{0}, Q^{2}\right)=-4 \pi i \frac{q_{0}}{q} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty}(2 J+1) \\
& \quad \times\left\langle A \lambda_{f} J_{f} M_{f}\right|\left[T_{J 0}^{m a g}(q) G\left(M_{f}+q_{0}+i \epsilon\right) T_{J 0}^{5, e l}(q)+T_{J 0}^{e l}(q) G\left(M_{f}+q_{0}+i \epsilon\right) T_{J 0}^{5, m a g}(q)\right. \\
& \left.\quad+T_{J 0}^{5, m a g}(q) G\left(M_{i}-q_{0}+i \epsilon\right) T_{J 0}^{e l}(q)+T_{J 0}^{5, e l}(q) G\left(M_{i}-q_{0}+i \epsilon\right) T_{J 0}^{m a g}(q)\right]\left|A \lambda_{i} J_{i} M_{i}\right\rangle
\end{aligned}
$$

Calculating T_{3} in the NCSM for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$

1) FT currents into momentum space
2) Multipole expansion
3) General electroweak basis of operators [6]

$$
\begin{aligned}
& T_{3}\left(q_{0}, Q^{2}\right)=-4 \pi i \frac{q_{0}}{q} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty}(2 J+1) \\
& \quad \times\left\langle A \lambda_{f} J_{f} M_{f}\right|\left[T_{J 0}^{m a g}(q) G\left(M_{f}+q_{0}+i \epsilon\right) T_{J 0}^{5, e l}(q)+T_{J 0}^{e l}(q) G\left(M_{f}+q_{0}+i \epsilon\right) T_{J 0}^{5, m a g}(q)\right. \\
& \left.\quad+T_{J 0}^{5, m a g}(q) G\left(M_{i}-q_{0}+i \epsilon\right) T_{J 0}^{e l}(q)+T_{J 0}^{5, e l}(q) G\left(M_{i}-q_{0}+i \epsilon\right) T_{J 0}^{m a g}(q)\right]\left|A \lambda_{i} J_{i} M_{i}\right\rangle
\end{aligned}
$$

Lanczos continued fraction method

- Reformulate as inhomogeneous Schrödinger equation [7]

$$
(H-E \mathbb{1})|\Phi\rangle=\hat{O}|\Psi\rangle
$$

$$
\begin{aligned}
& H \mathbf{v}_{1}=\alpha_{1} \mathbf{v}_{1}+\beta_{1} \mathbf{v}_{2} \\
& H \mathbf{v}_{2}=\beta_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\beta_{2} \mathbf{v}_{3} \\
& H \mathbf{v}_{3}=\quad \beta_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\beta_{3} \mathbf{v}_{4} \\
& H \mathbf{v}_{4}= \\
& \beta_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}+\beta_{4} \mathbf{v}_{5}
\end{aligned}
$$

- Resolvent becomes sum over Lanczos vectors with continued fraction coefficients [8]
- Avoids brute force calculation of intermediate states

$$
\left\langle{ }^{10} \mathrm{~B}\right| T_{J=1}^{\operatorname{mag}}(q) G\left(M_{f}+i \nu_{E}\right) T_{J=1}^{5, \mathrm{el}}(q)\left|{ }^{10} \mathrm{C}\right\rangle
$$

Integrating T_{3} in the NCSM for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$

- T_{3} contains poles in deformed contour!
- Ground state 3^{+}and low-lying 1^{+}have residues after Wick rotation
- Remaining poles in residue terms must also be treated

Poles	$n=1$	$n=2$	$n=3$	$n=4$
$P_{-}[\mathrm{MeV}]$	-0.048	0.0187	9.148	10.712
$P_{+}[\mathrm{MeV}]$	-8.9346	-10.975	-18.965	-22.354

Table 1: Pole locations along v axis corresponding to the n-th excited 1^{+}state in T_{3} amplitude for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ Fermi transition at $N_{\max }=2$.

Conclusions

- Goal: consistent nuclear theory corrections to Fermi transitions
- NCSM calculations of $\delta_{\text {NS }}$ underway
- NCSMC calculations for δ_{C} ongoing (with Mack Atkinson)

Outlook

- Residue contributions to γW-box
- Tackle large number of many-body calculations with realistic $N_{\max }$
- Improve limited uncertainty quantification
- ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$ transition
www.triumf.ca
Follow us @TRIUMFLab
(F) (ㅇ) (5)

Thank you

 Merci

References

1. C.Y. Seng. arXiv preprint. arXiv:2112.10942v2 (2022)
2. P.A. Zyla et al. (Particle Data Group). Prog. in Theo. and Exp. Phys. 2020, 083C01. (2020)
3. C.Y. Seng, M. Gorchtein, H.H. Patel, \& M.J. Ramsey-Musolf. Phys. Rev. Lett. 121(24), pp. 241804. (2018)
4. M. Gorchtein. Phys. Rev. Lett. 123(4), pp. 042503. (2019)
5. J.C. Hardy \& I.S. Towner. Phys. Rev. C 102, 045501 (2020)
6. W. Haxton \& C. Lunardini. Comp. Phys. Comm. 179, (2008) 345-358
7. M.A. Marchisio, N. Barnea, W. Leidemann, G. Orlandini. Few-Body Systems, 33(4) pp. 259-276. (2003)
8. R. Haydock. Journal of Physics A, 72120 (1974)

きTRIUMF

Backup

Symmetry tests of nuclear T_{3}

Nuclei

$$
\begin{gathered}
T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) \\
T_{3}^{(1)}\left(-\nu, Q^{2}\right)=\cdots
\end{gathered}
$$

Nucleons

$$
\begin{gathered}
T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) \\
T_{3}^{(1)}\left(-\nu, Q^{2}\right)=T_{3}^{(1)}\left(\nu, Q^{2}\right)
\end{gathered}
$$

Pions

$$
\begin{gathered}
T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) \\
T_{3}^{(1)}\left(\nu, Q^{2}\right)=0
\end{gathered}
$$

- Symmetries of T_{3} different in nuclei
- Currents can couple to
$-T=1 \rightarrow$ even with respect to v
$-T=2 \rightarrow$ odd with respect to v
- Important since previously assumed nuclear T_{3} had same symmetries as nucleonic system

Lanczos continued fractions method

- Reformulate as inhomogeneous Schrödinger equation [13]

$$
(H-E \mathbb{1})|\Phi\rangle=\hat{O}|\Psi\rangle
$$

$$
\begin{array}{|l|l|}
H \mathbf{v}_{1}=\alpha_{1} \mathbf{v}_{1}+\beta_{1} \mathbf{v}_{2} \\
H \mathbf{v}_{2}=\beta_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\beta_{2} \mathbf{v}_{3} \\
H \mathbf{v}_{3}= & \beta_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\beta_{3} \mathbf{v}_{4} \\
H \mathbf{v}_{4}= & \beta_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}+\beta_{4} \mathbf{v}_{5}
\end{array}
$$

Choose specific starting vector

$$
\left|v_{1}\right\rangle=\frac{\hat{O}|\Psi\rangle}{\langle\Psi| \hat{O}^{\dagger} \hat{O}|\Psi\rangle}
$$

No-core shell model (NCSM)

- Ab initio approach to many-body Schrödinger equation for bound states and narrow resonances [8]
- Nuclear interactions sole input [9-10]

Anti-symmetrized products of many-body HO states

$$
\begin{gathered}
H\left|\Psi_{A}^{J^{\pi} T}\right\rangle=E^{J^{\pi} T}\left|\Psi_{A}^{J^{\pi} T}\right\rangle \\
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N=0}^{N_{\max }} \sum_{\alpha} c_{N \alpha}^{J^{\pi} T}\left|\Phi_{N \alpha}^{J^{\pi} T}\right\rangle
\end{gathered}
$$

- Two body: NN-N4LO(500) [11]
- Three body: $3 \mathrm{~N}_{\mathrm{ml\mid}}$ [12]

Accessible transitions
${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ and ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$

