

TECHNISCHE UNIVERSITÄT DARMSTADT

Beyond Conventional RPA

Basis Optimization, Uncertainty Quantification and IM-SRG

Laura Mertes

TRIUMF Workshop 2023

March 2, 2023 | Institut für Kernphysik | Laura Mertes | 1

Motivation

strength distributions

- provide information about nucleus
- accessible in experiments
- use standard approximate methods such as (S)RPA

Motivation

TECHNISCHE UNIVERSITÄT DARMSTADT

- strength distributions
 - provide information about nucleus
 - accessible in experiments
- use standard approximate methods such as (S)RPA

Single-Particle Basis

Hartree-Fock

Natural Orbitals

- ► HF calculation + low-order perturbation theory → one-body density matrix
- NATs are eigenstates of this matrix

Random-Phase-Approximation (RPA)

ground state |RPA>: ph excitations of basis state

$$\left(\mathcal{Q}_{\lambda}^{\mathsf{RPA}} \right)^{\dagger} = \sum_{\rho_{1},h_{1}} \left(X_{\rho_{1}h_{1}}^{\lambda} a_{\rho_{1}}^{\dagger} a_{h_{1}} - Y_{\rho_{1}h_{1}}^{\lambda} a_{h_{1}}^{\dagger} a_{\rho_{1}} \right)$$

- excited states: linear combinations of ph and hp excitations of $|\text{RPA}\rangle$
- SRPA: includes additional 2p2h excitations
- derive equations of motion
- \rightarrow solve matrix eigenvalue problem

In-Medium (S)RPA

- decouples reference state from ph excitations
 - pathological behavior of SRPA: energy shift to lower energies
 - IM-(S)RPA reduces to (S)TDA which allows ph but no hp excitations
- ightarrow strengths from IM-RPA at higher energies
- \rightarrow instabilities are removed

Uncertainty Quantification

- different chiral orders Qⁱ of interaction
- observable X in terms of Qⁱ
- applying Bayes' theorem for uncertainty quantification

Basis Optimization for ¹⁶O

TECHNISCHE UNIVERSITÄT DARMSTADT

March 2, 2023 | Institut für Kernphysik | Laura Mertes | 7

TECHNISCHE UNIVERSITÄT DARMSTADT

Thanks to my group

P. Falk, K. Katzenmeier, M. Knöll, J. Müller, R. Roth, L. Wagner, C. Wenz, T. Wolfgruber

O. Wenz, I. Wongruber

Institut für Kernphysik, TU Darmstadt

Thank you for your attention!

