

Machine Learning for *Ab Initio* Nuclear Structure Calculations

Tobias Wolfgruber

Progress in *Ab Initio* Nuclear Theory TRIUMF 2023

March 2, 2023 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 1

No-Core Shell Model

stationary Schrödinger equation as matrix eigenvalue problem

Slater determinants $|\phi_i\rangle$ constructed from HO basis \rightarrow dependency on HO frequency $\hbar\Omega$

truncate model space by number of excitation quanta N_{max} w.r.t. the lowest-energy Slater determinant

No-Core Shell Model

stationary Schrödinger equation as matrix eigenvalue problem

Slater determinants $|\phi_i\rangle$ constructed from HO basis \rightarrow dependency on HO frequency $\hbar\Omega$

truncate model space by number of excitation quanta w.r.t. the lowest-energy Slater determinant

convergence controlled by two parameters

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

Machine Learning Approach

Negoita et al. PR C 99, 054308 (2019) previous applications: capture $f(N_{max}, \hbar\Omega)$ Jiang et al. PR C 100, 054326 (2019) now: directly predict converged value from available calculations include information of multiple frequencies ► -7.0 $\hbar\Omega$ [MeV] -7.2ЗH 24.0-7.428.032.0-7.6limit $E_{\rm g.s.}[{\rm MeV}]$ Prediction -7.8-8.0-8.2-8.4-8.68 16 20 24 2836 40 $N_{\rm max}$ Knöll, TW et al. PLB 839, 137781 (2023)

March 2, 2023 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 5

Statistical Evaluation

- apply 1000 ANN
- prediction and uncertainty from Gaussian fit

- different family of interactions Maris et al. PR C 103, 054001 (2021)
- construction of evaluation samples analogoulsy to training samples
- different predictions from one ANN
- turn to statistical approach

¹⁶O Ground-State Energy

March 2, 2023 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 7

⁴He Excitation Energy

⁶Li Radius

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

thanks to my group and collaborators

P. Falk, K. Katzenmeier, **M. Knöll**, L. Mertes, J. Müller, **R. Roth**, L. Wagner, C. Wenz

