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No-Core Shell Model

▶ stationary Schrödinger equation as matrix eigenvalue problem

▶ Slater determinants |ϕi⟩ constructed from HO basis
→ dependency on HO frequency ℏΩ

▶ truncate model space by number of excitation quanta Nmax

w.r.t. the lowest-energy Slater determinant

▶ convergence controlled by two parameters
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Convergence Behavior
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Convergence Behavior
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Machine Learning Approach

▶ previous applications: capture f (Nmax, ℏΩ)
▶ now: directly predict converged value from available calculations

▶ include information of multiple frequencies
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Negoita et al. PR C 99, 054308 (2019)
Jiang et al. PR C 100, 054326 (2019)
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16O Prediction
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training samples

▶ total of 340 200 samples
across 2H, 3H, and 4He
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Statistical Evaluation
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▶ different family of interactions

▶ construction of evaluation samples
analogoulsy to training samples

▶ different predictions from one ANN

▶ turn to statistical approach

Maris et al. PR C 103, 054001 (2021)

▶ apply 1000 ANN

▶ prediction and uncertainty
from Gaussian fit
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16O Ground-State Energy
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4He Excitation Energy
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6Li Radius
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Thank you for your attention!

▶ thanks to my group and collaborators

P. Falk, K. Katzenmeier, M. Knöll, L. Mertes,

J. Müller, R. Roth, L. Wagner, C. Wenz
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Motivation

Given only linear increases in computa-
tional power in the last decades, new ap-
proaches must be developed to extend
the reach and improve the accuracy of
ab initio many-body methods in nuclear
structure theory, like the no-core shell
model (NCSM) [1, 2]. With the help of
artificial neural networks (ANN), which
have already been used in nuclear struc-
ture physics [3, 4], we maximize the
information we can gather from stan-
dard NCSM runs.
To achieve this, we present a universal
machine learning model that captures
the observable-specific convergence pat-
tern and gives reliable estimates for the
fully converged calculation with a real-
istic uncertainty [5].

No-Core Shell Model

• nuclear many-body Schrödinger equation is cast
into matrix eigenvalue problem

∑

j

⟨ϕi |H |ϕj⟩ ⟨ϕj |Ψn⟩ = En ⟨ϕi |Ψn⟩

• Slater determinants |ϕi⟩ are constructed from HO
basis
→ dependency on HO frequency h̄Ω

• model space truncated via total number of exci-
tation quanta Nmax

• convergence controlled by Nmax and h̄Ω

• limit for Nmax → ∞ independent of h̄Ω

• energies: monotonously decreasing with Nmax
other observables: almost no restrictions on con-
vergence pattern

Methodology and Network Topology

• train networks on few-body data
(once per observable)

• apply trained ANNs to arbitrary
nuclei accessible in the NCSM

• evaluate all predictions statisti-
cally to extract converged value
and uncertainty
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• fully connected feed-forward
neural network

• use information from 4 consecu-
tive Nmax sequences from 3 dif-
ferent HO frequencies as input

• layer sizes: 12, 48, 48, 24, 1

Training Data, Training & Statistical Evaluation

• train on few-body data ( 2H, 3H, and 4He) for which the converged value can be
easily obtained with Jacobi-NCSM calculations

• use calculations of 36 different interactions (varying cutoff, chiral order, and SRG)
for 7 different HO frequencies (12–36MeV)

• this generates a total of 340 200 unique training samples

• every sample fed to the network is a tuple of 3 observable sequences which differ
in HO frequency for the same 4 consecutive Nmax values each
→ the network has no information about the nucleus, interaction, SRG or the
specific HO frequency or Nmax values

• apply MINMAX normalization to each training sample to rescale all values of
observable O to the interval [0,1]
→ prevents overfitting and alleviates scale dependence present in the ground-state
energy when applying the networks to heavier nuclei

• statistical approach with 1000 ANNs and Gaussian fit to extract prediction and
uncertainty
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Ground and Excited-State Energy Results

Radius Results

Conclusion

• data from light systems up to 4He suf-
ficient to train ANNs used for predic-
tions in heavier systems

• generally outperforms classical extrap-
olation methods especially in smaller
model spaces

• universal approach:
– network topology works well for
ground and excited-state energies,
radii and possibly more observables

– only train once per observable inde-
pendent of nucleus, interactions, . . .

Outlook

• generate more independent training
data using artificially modified poten-
tial or even toy potentials
– improve training data quality and
suppress any remaining biases

– make observables accessible in few-
body systems that are not present in
realistic potential, e.g. electromag-
netic transitions etc.

• expand to more observables
• further optimize network topology
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• ground-state energy extrapolations
very reliable and stable

• often much better than classical ex-
trapolation [6] in small model spaces

• observed more stable and less scale
dependent results with MINMAX nor-
malization than without

• calculating excitation energies:
– use ANNs trained on ground-state
energies

– apply ANN to ground and excited-
state absolute energies separately

– calculate difference and repeat this
for all ANNs and permutations to ob-
tain distribution
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• radii are a lot more challenging than
ground or excited-state energies
→ no variational principle to constrain
convergence behavior

• need at least one more Nmax step than
energies for comparably good results

• generally more reliable and precise than
classical extrapolation technique


