

Physics and Engineering Design of the 500 keV Beam Source for BEST Neutral Beam Injector

Jianglong Wei Institute of Plasma Physics, HFIPS, CAS

20th International Conference on Ion Source, Victoria, Canada, September 17 – 22, 2023

ONTE Z

01 Background of BEST NBI

- **02** Overall Design of Beam Source
- **03** Key Design of Plasma Source
- **04** Key Design of Accelerator
- **05** Summary & Future Plans

Introduction of BEST

Burning plasma Superconducting Tokamak with High-Jc superconductor Object: to generate electricity from fusion power for the first time on Earth

Main design parameters of JT-60SA, ITER & BEST

Key Design	JT-60SA	ITER	BEST	
Species	DD	DD, DT	DD, DT	
Major Radius	3.0 m	6.2 m	3.6 m	
Minor Radius	1.18 m	2.0 m	1.1 m	
Toroidal Field	2.3 T	5.3 T	6.	1 T
Plasma Current	5.5 MA	15.0 MA	2.8 MA (S.S.)	7.0 MA (ind.)
Fusion Power		500 MW	10 MW (S.S.)	160 MW (ind.)
Energy Gain Q		10	0.3 (S.S.)	5 (ind.)
Pulse Length	100 s (ind.)	400 s (ind.)	1~4 h (S.S.)	10 s (ind.)

S.S.=steady-state operation, ind.=inductive operation

BEST Neutral Beam Injector

For plasma heating & current drive, burning control, essential for Q>5 scenario
 Negative ion source based neutral beam injector, ITER-like structure

Overall Design of Beam Source

 | RF driven & Cs seeded plasma source + multi-aperture & multi-stage accelerator

 | Based on R&D experience worldwide and R&D activities of CRAFT NNBI project

Overall Design Pl

Summary

Overall Design of Beam Source

| RF driven & Cs seeded plasma source + **multi-aperture & multi-stage** accelerator | Based on R&D experience worldwide and R&D activities of CRAFT NNBI project

7.7A (130A/m²) @ 0.4Pa @ 55kV @ 105s 13.0A (220A/m²) @ 0.4Pa @ 51kV @ 10s

Background **Overall Design** Plasma Source Accelerator

Key Design of Plasma Source

| RF driver: $1MHz@45kW/driver \rightarrow 200A/m^2$ H-; 2MHz & longer tube will be tested

Expansion chamber: Larger cross section of 1.1×1 m² (vs ELISE) for better beam uniformity

Key Design of Plasma Source

| Cs seeding: Sensitive to T_{PG} (optimal 180°C) and surface injection (but increase breakdown) | Confinement/Filter field: Lower e/H- with conf. field; $I_{PG} \sim 1000A$ w/o $I_{return} \rightarrow 200A/m^2$ H-

Key Design of Plasma Source

| PG Bias: $V_{bias} \sim 15V$ (BP floating) \rightarrow 200A/m² H-; Optimal V_{bias} for e/H- (repeated experiments)

Backstream ions: Source backplate adopts Mo-Cu composite structure (Mo ~1mm)

Accelerator

2e14

9.0h

2e-3

Мо

6.4e22 m⁻³

Based on the design or experimental results of JT-60SA/LHD/ITER

| Multiphysics modeling including almost physics and engineering issues of an accelerator

Electrode structure: PG/EG/AG1/AG2/GG aperture~14/13/14/16/16mm

Single beamlet optics: Acc. gap~90/95/95mm for 200A/m² D- (for better HV holding)

Background

Overall Design Plasma Source

| Multi-beamlet focusing: Multi-step of E field shaping to steer all beamlets to a point

Deflection compensation: Crisscross magnets to compensate magnetic deflection

Overall Design Plasma Source

High voltage holding: Source immersed in vacuum for better insulation
 Stripping loss (~22% at 0.3Pa): Lateral gas pumping (~75%) by using post insulators

Stray particles: by simulation of Particle-gas & Particle-electrode during particle transport

| Most of power deposition on electrode is from stray electron by deflection magnets

• Single stripping: $D^- + D_2 \rightarrow D^0 + D_2 + e$ • Double stripping: $D^- + D_2 \rightarrow D^+ + D_2 + 2e$ • Electron loss: $D^0 + D_2 \rightarrow D^+ + D_2 + e^-$ • Gas ionization: $D^-/D^0/D^+ + D_2 \rightarrow D^-/D^0/D^+ + D_2^+ + e^-$ AG1 | 722kW AG2 | 767kW EG | 213kW MW/m² MW/m² • Secondary electron: $D^{-}/D^{0}/D^{+}/e + D_{2} \rightarrow e$ MW/m 3.5 10 **D- trajectories** electron trajectories keV 500 2.5 450 400 1.5 350 300 250 0.5 200 150 100 50

Cooling design for electrode : Narrow channels (for high water speed) close to hot spots

Assembly design for electrode : Synergy the thermal deformation among different electrodes

Background

Overall Design Pla

Plasma Source Accelerator

Summary

Summary & Future Plans

For 500keV BS	Contents		
Conceptual/ Parametric	 Identify overall design requirements and parameters Identify RF-driven plasma source and MAMuG accelerator 		
Plasma Source	 Take ELISE plasma source as reference Base on results of single/dual driver negative ion source of CRAFT Include RF driver, expanding chamber, Cs injection & recycle, magnetic field, electron suppression, backstream ion protection 		
Accelerator	 Take JT-60/ITER accelerator as reference Base on multi-physics design model Include single beamlet optics, multi-beamlet steering, high voltage holding, stripping loss, stray particles, thermo-mechanics 		

Summary & Future Plans

Summary & Future Plans

Thanks !

Q&A

Jianglong Wei (jlwei@ipp.ac.cn)

