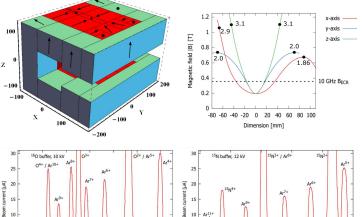

Permanent magnet ECR ion source and LEBT dipole for single-ended heavy ion ToF-ERDA facility

Olli Tarvainen¹, Dan Faircloth¹, Jaakko Julin², Taneli Kalvas², Hannu Koivisto², Sami Kosonen² and Ville Toivanen² ¹STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, United Kingdom ²University of Jyvaskyla, Department of Physics, Accelerator Laboratory (JYFL-ACCLAB), 40500 Jyvaskyla, Finland

IVERSITY OF JYVÄSKYLÄ


1-10 pnA at the sample

Example: metal tri-layer on silicon-oxide substrate.

10 GHz CUBE-ECRIS - argon charge state distribution

89 m]

100 110 120

CUBE-ECRIS

nagnetic field [mT]

Return voke

platform Simplifies the accelerator and eliminates the use of SF₆ (potent green house gas). Xq Sample recoils ToF - Energy Negative Electrostatio m/q m/q on source ccelerato chambe telescope magne magne X...Z) Xq recoils ToF - Energy PM PM m/a Sample ECRIS magnet chamber telescope High voltage platform Beam Energy lon Charge state Energy 35/37CI 3 - 6 MeV **Required ion flux:** ⁴⁰Ar 6+ ... 12+ 3 - 6 MeV

⁸⁴Kr

136Xe

Conventional ToF-ERDA facility: negative ion source and electrostatic accelerator.

New concept: High charge state ion source on a 500 kV high voltage

Negative ions (SNICS ion source)

8 - 11 MeV

9 - 16 MeV

^{79/81}Br

127

High charge state positive ions (ECR ion source)

16+ ... 22+

8 - 11 MeV

18+....32+ 9-16 MeV

10 GHz CUBE-ECRIS - particle fluxes of argon, krypton and xenon

$\frac{^{40}\mathrm{Ar}}{\mathrm{Ion}}$	(3-6 MeV)*		84 Kr	(6.5 – 9.5 MeV)		$^{131}\mathrm{Xe}$ or $^{136}\mathrm{Xe}$	(9 – 13.5 MeV)	
	<i>Ι</i> [μA]	Flux [pnA]	Ion	I [µA]	Flux [pnA]	Ion	$I \ [\mu A]$	Flux [pnA]
Ar ⁶⁺	27	4500	Kr^{13+}	9.5	730	Xe^{18+}	6.1	340
Ar^{7+}	24	3400	Kr^{15+}	6	400	Xe^{19+}	5.2	270
Ar ⁸⁺	31	3900	Kr^{17+}	1.8	110	Xe^{20+}	3.7	180
Ar^{9+}	16	1780	Kr^{18+}	1.1	60	Xe^{21+}	2.5	120
Ar^{10+}	5.8	580	Kr^{19+}	0.31	16	Xe^{23+}	0.9	22
Ar^{11+}	1.9	170				Xe^{24+}	0.2	8
Ar^{12+}	0.4	33				Xe^{27+}	0.02	0.7

ean

* With the planned 500 kV platform voltage

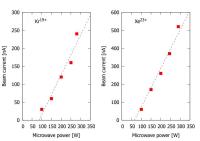
The beam currents are limited by the microwave power in 10.5-11.5 GHz frequency range and by the 50 % efficient beam transport of the slit-shaped beam.

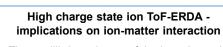
The 300 W TWT amplifier to be replaced by a 600 W solid state amplifier.

> 40 30

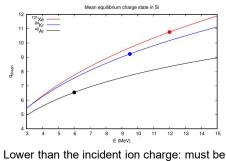
SCAN ME

50


[mm]


Built at STFC's Daresbury Laboratory.

To be tested at


JYFL-ACCLAB.

=1 33 T

The equilibrium charge of the ions depends on the ion velocity and target material.

taken into account in analysis.

Also: Release of potential energy near the surface, e.g. 2.1 keV vs. 2.7 keV / nm electronic stopping of of 6 MeV argon.

International Conference on Ion Sources

ICIS'23

Presented at the 20th International Conference on Ion Sources, Victoria, BC, Canada, 17-22 September 2023

ial [kV]

PM dipole

100

110

field [mT]

120

M/Q = 3

M/Q = 4

M/Q = 5

M/O = 6M/Q = 7

844-194 131xe2