

Compact Monoenergetic Proton Generator in MeV Region Using NANOGAN

Tetsuhiko Yorita^a, Yasuyuki Morita^b, Keiji Takahisa^c,

Tatsushi Shima^a, Hiroki Kanda^a, Mitsuhiro Fukuda^a

- a. Research Center for Nuclear Physics, Osaka University
 - b. RIKEN Nishina Center
 - c. Kobe Tokiwa University

20th International Conference on Ion Sources, September 17~22, 2023

Purposes :

generating protons in MeV region with monochromatic energy for

- \diamond detector calibration
- \diamond cell irradiation
- ♦ RI production

Concept:

Low construction cost, compact

 No Accelerators like Van de Graaf or Cyclotron

Use fusion reaction ³He+d→p+⁴He
(The proton energy is 14.67MeV)
→Energy requirement is only
In several hundred keV

→Compact generator can be constructed with ion sources

³He+d reaction cross section shown by dashed line [M. Nocente et al., Nucl. Fusion 50 (2010) 055001]

Previous Studies

Confirmation of $3He+D \rightarrow P+4He$ reaction with deuterated polyethylene target.

Target 3He²⁺ Beam 80mm 10mm 10mm Plastic Scintillator 5mm

Trying to obtain protons in atmosphere through thin AI window of ϕ 20mm and 0.3 mm thickness on AI flange with deuterated polyethylene target.

[presented in ICIS'19] 2204 protons / 10 minutes with ³He²⁺ beam from SC-ECR (40keV (20kV), ~400eµA)

But not monochromatic

EJ-212(ELJEN Technology)

#2/13

Setup in vacuum chamber

Our Goal

Generating protons in MeV region in **atmosphere** with **high intensity** and **monochromatic energy**

requirements:

- ♦ High intensity ion source
- \diamond High voltage acceleration for higher cross section
- \diamondsuit Thin Window for less energy loss

³He+d reaction cross section

Compact Ion Source

NANOGAN (PANTECHNIK) 10GHz permanent magnet ECR

Modification on DC cut and insulation of stand for 50kV acceleration has been done. We obtained CW ⁴He²⁺ beam of 800 μ A with the 50kV. (Cf: spec. on catalog is 100 μ A@20kV)

New Thin Window

Window material is Polyimide film of 130 µm

Thin metal foil is placed in front of the window to protect the window from beam heat load

Deuteron Target

 Deuteron target is made of Deuterated Polyethelene (Poly-C₂D₂) using press machine.
Thickness is 30~50mm.
Targets are mounted on Ni foil.
Beam current was measured by Ni foil stage.

Beam Heat Load Problems in Pre-Tests

 \bullet ⁴He¹⁺ beam of 20kV and 3mA broke Ni foil and then Polyimide film

●³He²⁺ beam of 20kV and 0.4mA deformed target in previous SC-ECR test

→The beam current was limited to several μ A this time →cooling system will be constructed in future

#7/13

Experimental Setup

Conditions Acc. HV : 45 kV, 30 kV and 20 kV ³He²⁺ current : 2~3eµA

Proton detector: Plastic Scintillator (15x15x40) + PMT

Results

-Beam OFF -Bean ON

Protons of 14.0MeV has been obtained successfully !!

³ He ²⁺ Energy [MeV]	event rate [/sec./µA]
0.04	0.081
0.06	2.34
0.09	31.5

→Over 2.5E+4 protons / sec. will be obtained with ³He²⁺ of 800eµA at 50kV

 \diamond detector calib. \rightarrow good enough

- ♦ cell irradiation \rightarrow OK
- ♦ RI production \rightarrow ??

Targets after Irradiation Before irradiation

After irradiation

Deformation has not been seen Beam unevenness has been seen

We will prepare cooling system for further study

Comparison with Reaction Cross Section

#11/13

 $poly-C_2D_2$

- The beam unevenness or less reproducibility
- Energy loss of projectile in $poly-C_2D_2$

 \rightarrow Dense deuteron target without C may make less ionization loss and more event rate

Plan of New Deuteron Target for higher beam load

Deuteron adsorbed on Ti vapor deposition on metal foil with cooling system.

- No target deformation \rightarrow OK
- ♦ Dense target \rightarrow ??

• Strength against beam \rightarrow ??

Summary

To constructing proton generator in MeV region with monochromatic energy with low construction cost and compactness, we selected fusion reaction ${}^{3}\text{He+d} \rightarrow p{}^{4}\text{He}$ that the proton energy is **14.67MeV**

To obtain protons in atmosphere with high intensity and monochromatic energy, the generator should consist with

- High intensity ion source
- High voltage acceleration for higher cross section
- Thin Window for less energy loss

We obtained 31.5 protons/sec./ μ A in atmosphere with energy of 14MeV under condition of ³He²⁺ beam of 45kV ~2 μ A and Thin target and window.

Over 2.5e+4 protons/sec. can be expected after development of new target.