

INTERNATIONAL CONFERENCE ON ION SOURCES

ASTERICS, A NEW SUPERCONDUCTING ECRIS FOR SPIRAL2

T. Thuillier¹, J. Angot¹, A. Cernuschi¹, J. Giraud¹, P. Giroud-Garampon¹, N. Nicaise¹, C. Peaucelle¹, F Kiener¹, E Lagorio¹, E. Perbet¹, P. Sole¹, S. Shick¹, F. Vezzu¹, D. Simon², C. Berriaud², T. Cadoux², H. Felice², E. Fernandez-Mora², B. Hervieu², G Minier², A. Sinnana², R. Touzery², S. Trieste², M. Dubois³, F. Lemagnen³, L. Maunoury³, B. Osmond³, A. Trudel³, D. Goupillière⁴

FRANCE

OUTLINE

- NEWGAIN project, beam requirements and how to answer them
- Motivation to build a large ECR 28 GHz ECRIS
- Status of the ASTERICS design
- Concept of thick active hot liner for metallic beam operation

NEWGAIN: NEW GANIL INjector

- Funded Project to design and build a M/Q=7 heavy ion injector for the SPIRAL2 accelerator at GANIL, Caen , France
- French multi-laboratory collaboration
- Project Timeline : 2023-2030

NEWGAIN Ion Source Specifications

Discussion

- RFQ input: 10 kV/Q with M/Q \leq 7
- Single charge state ion beam
- Accelerate heavy ions up to uranium
 - 13 pµA for M ≤100
 - 10 pµA for M >100
- Minimize the project risk (SC magnet)

- 18 GHz plasma sufficient to make the M ≤100 beam intensities
- 28 GHz ECRIS required to produce the M > 100 beam intensities
- Practical state of the art 28 GHz U³⁴⁺ intensity in operation: ~200 µA (6 pµA)
- How to produce 10 pµA of U³⁴⁺?
- And keeping the project risk low?
- Can a larger volume ECR source @28 GHz answer the need?

ECR Volume and Ion beam intensity (1/2)

- Return of experience from the 18 GHz ECRIS
- Ploting Ar¹²⁺ Beam intensity vs $L_{ECR} \times R_{ECR}^2 (\approx V_{ECR})$
- For several ion sources : PHOENIX V2, PHOENIX V3 GTS, HIISI, SUSI
- Magnetic structures are comparable as they follow the magnetic scaling laws
- RF Power/cm³~const~0.5 W/cm³
- $\rightarrow n_e$ and T_e ~ const
- $\rightarrow I \approx V_{ECR}$

Ar¹²⁺ Beam intensity

ECR Volume and Ion beam intensity (2/2)

- A longer plasma will make more ion beam
- A larger plasma will boost U³⁴⁺ intensity wrt U³³⁺
- This is the strategy chosen to target 10 pµA U³⁴⁺ beam intensity
- Bonus: enhancement of metal vapor capture with a larger plasma volume

Minimizing risks for the SC ECRIS design

- Use the positive return of experience from VENUS, SECRAL II, RIKEN SC
- = > Choose the ECR frequency at 28 GHz
- Use the bladder and keys technique to mitigate the risk on the hexapole coil assembly
- \Rightarrow as for VENUS-FRIB and FECR
- keep the existing VENUS-FRIB magnet mechanics design system topology

Improving beam intensities with a larger plasma volume

- Choice for ASTERICS plasma chamber : L=600 mm, r=91 mm
 - VENUS (L=500 mm, r=71 mm)
- U^{34+} Ion beam expected $\geq 8-9$ pµA for long run operation
 - State of the art ~6 pµA (VENUS)

ASTERICS* SC magnet

- Designed by CEA Irfu
- Axial max profile 3.7-0.1-2.5 T

- Radial field B_r~2.45 T@ r=91 mm
- Last closed magnetic surface at wall for 3.7-0.3-2.5 T is |B|~2T
- Benefit of a larger ECR source is the relaxation of the unwanted radial component of the axial coil magnetic field
- Also relaxes forces on hexapole coils (counter-intuitive)

(*) ASTERICS=Advanced Spiral Two Electron cyclotron Resonance I on source with Superconducting magnets at Caen

ASTERICS B Peak Fields and Temperature Margin

- Same conductor type as VENUS FRIB , cable recently ordered (Furukawa, JP)
- Temperature Margin:
 - >1.5 K for solenoids
 - ~1 K for hexapole

	Solen. INJ			Solen. MID			Solen. EXT			hexapole		
	B Peak (T)	I (A)	Т (К)	B Peak (T)	I (A)	Т (К)	B Peak (T)	I (A)	Т (К)	B Peak (T)	I (A)	Т (К)
ASTERICS												
0.2.17.9	5.8	186.1	6.04	4.01	-180	6.95	5.35	208.4	6.18	6.61	450	5.15

ASTERICS magnet construction strategy

- Racetrack Mock-up recently built at CEA
 - to test the winding technique and epoxy impregnation under vacuum

- Magnet and cryostat preliminary design done by CEA
- Construction subcontracted to the industry
- Stand alone magnet test planned at CEA before assembly in the cryostat
- 12 racetrack coils built
- 16 km of spare cable ordered

cea irfu

ICIS'23, Wed. 20 Sept. 2023, Victoria, Canada

Source and platform preliminary design (under progress)

- 50 KV HV platform
- Source HV tunable: 20-40 kV
- LEBT on platform
- 28 GHz gyrotron @ ground

Source mechanics preliminary design

Motivation to develop a new generation of ECRIS hot liners

Hot spot

Colder

- Liner used to enhance the production yield of high vapor pressure metal beams like Ca
- Today hot liners in ECRIS are usually thin foils (~0.1 mm) directly heated by the plasma

ion

- Thin liner => poor thermal conduction in the liner
 => hot spots => easy to melt
- If RF power is OFF while oven is ON => accumulation of metals on the liner => overshoot of metal vapor when RF is resumed

Concept of thick active liner for ECRIS

- Use a thick hot liner to homogenize its temperature
- Add radiation screens to increase the mean liner temperature
- Add a stainless steel helically wrapped tube in which compressed air can flow, acting as a radiation screen
- The air flow reduces the liner temperature

Active hot liner simulation

- Thermal Simulation with Ansys 2D
- Anisotropic power flux
- Air forced convection and thermal radiation modelled
- radiation screens
- 0 or 12 m3/h airflow
- Center of plasma chamber (6 loss lines)

Plasma anisotropic

heating

Simulation results and discussion

- Max reachable temperature with 2 kW RF is 800° C with 3 screens
- Max temperature with 2 kW RF is 700° C without screens
- Thick liner wall => temperature homogeneity at wall +- 12° C
- Air cooling can remove 200° C for a 12 m³/h air flow => partial control of the evaporation
- The temperature range of liner operation can be adapted by changing the number of screens
- The Air cooling allows to keep the liner temperature constant while changing other source parameters (gas glow, RF)
- The Air cooling helps to mitigate overshoots of evaporation after a RF shutdown

A thick active hot liner for ASTERICS

- \leq 20 mm radial thickness (R=91 to R=71 mm)
- 2mm thick hot liner For 18 GHz RF heating $B_r = 1.3T@wall$ B_r=2T@wall r=71 mm For high vapor Pressure metals Air RF B_r Ion Beam atom 1.3T Hexapole magnetic \varnothing 8/10 SS pipe variable Field intensity Plasma chamber Set of radiation shields air flow 0-12 m^3/h cut away view $B_{ECR} = 0.64 T$

GRENOBLE | MODANE

COAVE GRANLUND.COM POLITICAL CARTOONS.COM

ICIS'23, Wed. 20 Sept. 2023, Victoria, Canada

Any question?

