A High-Intensity, Low-Energy Heavy Ion Source for a Neutron Target **Proof-of-Principle Experiment at LANSCE**

Before:

Andrew L. Cooper, S. Mosby, A. Couture, E. Bennett, N. Gibson, D. Gorelov, C. Keith, A. Lovell, G. Misch, and M. Mumpower | Los Alamos National Laboratory R. Reifarth | Goethe University Frankfurt

Why measure neutron reactions on unstable isotopes?

- **1.** Heavy-element nucleosynthesis via neutron capture:
 - **s-process** (10⁸-10¹¹ n/cm³, $t_{1/2} \sim$ yrs-days)
 - i-process (10^{12} - 10^{15} n/cm³, t_{1/2} ~ hrs-sec)
 - **r-process** (10²⁰-10²² n/cm³, $t_{1/2} \sim$ subsec)
- 2. Data for the weapons physics and radiochemical diagnostics communities on daughter nuclei from fission neutron reactions.

Current measurements on radionuclides at LANSCE

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Neutron reactions in inverse kinematics

After:

Inverting the roles of beam and target: n(A,X)B

Neutron Target Facility concept [1,2] Protons Facility consists of a high-intensity, Tungsten spallation target Wien Filter Moderato Revolving Particle Detectors ions Electron cooler Schottky pickup Ring is fed by an Isotope **Separation On-Line (ISOL)** radioactive ion source, also driven by LANSCE.

Protons

The Neutron Target Demonstrator (NTD) at LANSCE

A single-pass experiment at Target 2: **1. Construct a simple spallation target** and moderator, and characterize ion pipe neutron field density with Au samples during operation with LANSCE proton beam.

- 2. Transport mA-level beams of stable heavy ions through the neutron target assembly to induce neutron captures in inverse kinematics using strong, well-known resonances at low energies and collect ions for offline analysis.
- **3. Measure the number of transmuted** beam ions collected via decay gamma-ray counting setup to obtain the effective neutron density within the moderator.

Demonstrator science objectives:

- Tech. mat. >>> Validate the neutron target concept and reveal future challenges.
- n density in moderator Validate design and simulation capability.

Detector or
Delector or
Sonarator
Separator

Sample half-life limit using <u>inverse kinematics</u>: $t_{1/2} \sim minutes!$

heavily moderated spallation neutron source driven by LANSCE and coupled with a radioactive ion beam storage ring.

Separator	Detection
	system

Particle detection occurs outside of the thermal neutron field via separation in space or time.

Ion source

The NTD low-ener	' <mark>gy</mark> ,
heavy ion source	by

Reaction	$\sigma(E_r)$ [b]	E^{LAB}_{r} [keV]	$T_{1/2}$
$^{59}\mathrm{Ga}(\mathrm{n},\gamma)^{70}\mathrm{Ga}$	439.333	23.032131	21.1 4 m
$^{69}\mathrm{Ga}(\mathrm{n},\gamma)^{70}\mathrm{Ga}$	966.705	7.645131	$21.1~4~\mathrm{m}$
$^{71}\mathrm{Ga}(\mathrm{n},\gamma)^{72}\mathrm{Ga}$	224.908	50.0408	14.10 h
$^{71}\mathrm{Ga}(\mathrm{n},\gamma)^{72}\mathrm{Ga}$	1925.31	6.7946432	14.10 h
$^{79}\mathrm{Br}(\mathrm{n},\gamma)^{80}\mathrm{Br}$	422.341	14.9705	$17.68~\mathrm{m}$
$^{79}\mathrm{Br}(\mathrm{n},\gamma)^{80}\mathrm{Br}$	944.678	4.242142	$17.68~\mathrm{m}$
$^{79}\mathrm{Br}(\mathrm{n},\gamma)^{80}\mathrm{Br}$	3522.58	2.8281763	$17.68~\mathrm{m}$
$^{81}\mathrm{Br}(\mathrm{n},\gamma)^{82}\mathrm{Br}$	308.482	46.8747	$35.282~\mathrm{h}$
$^{81}\mathrm{Br}(\mathrm{n},\gamma)^{82}\mathrm{Br}$	1280.23	10.9836	35.282 h
$^{81}\mathrm{Br}(\mathrm{n},\gamma)^{82}\mathrm{Br}$	2238.58	8.197038	$35.282~\mathrm{h}$
$^{78}\mathrm{Kr}(\mathrm{n},\gamma)^{79}\mathrm{Kr}$	581.563	35.1702	35.04 h
$^{78}\mathrm{Kr}(\mathrm{n},\gamma)^{79}\mathrm{Kr}$	1613.8	8.455122	35.04 h
$^{34}\mathrm{Kr}(\mathrm{n},\gamma)^{85m}\mathrm{Kr}$	362.594	43.596	4.480 h
$^{08}\mathrm{Cd}(\mathrm{n},\gamma)^{109}\mathrm{Cd}$	881.106	33.658848	461.4 d
$^{08}\mathrm{Cd}(\mathrm{n},\gamma)^{109}\mathrm{Cd}$	1364.05	25.2288	461.4 d
$^{14}\mathrm{Cd}(\mathrm{n},\gamma)^{115}\mathrm{Cd}$	1365.53	13.69482	53.46 h
$^{127}{ m I}({ m n},\gamma)^{128}{ m I}$	1017.8	9.9733862	$24.99~\mathrm{m}$
$^{127}{ m I}({ m n},\gamma)^{128}{ m I}$	1683.76	5.7651142	$24.99~\mathrm{m}$
$^{127}\mathrm{I}(\mathrm{n},\gamma)^{128}\mathrm{I}$	3389.91	4.7929292	$24.99~\mathrm{m}$
$^{127}\mathrm{I}(\mathrm{n},\gamma)^{128}\mathrm{I}$	2940.08	3.9680388	$24.99~\mathrm{m}$
$^{127}{ m I}({ m n},\gamma)^{128}{ m I}$	386.326	2.5944322	$24.99~\mathrm{m}$
$^{24}\mathrm{Xe}(\mathrm{n},\gamma)^{125}\mathrm{Xe}$	925.311	31.192572	16.9 h
24 Xe(n, γ) 125 Xe	42255.1	1.2548304	16.9 h
24 Xe $(n,\gamma)^{125}$ Xe	39581.9	0.6311352	16.9 h
26 Xe(n, γ) 127 Xe	437.868	31.437	$36.346 \ d$
26 Xe $(n,\gamma)^{127}$ Xe	2125.46	1.24475526	36.346 d
$^{32}\mathrm{Xe}(\mathrm{n},\gamma)^{133}\mathrm{Xe}$	102.45	84.9156	$5.2475~{\rm d}$
${}^{32}Xe(n,\gamma){}^{133}Xe$	743.81	15.17076	$5.2475 \ d$

- sea level.

[2] S. Mosby et al., LA-UR-21-30261 (2021)