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Element-selective radioactive ion beam production: RILIS
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Conclusion & Outlook
➢ RILIS as workhorse ion source at RIB facility CERN-ISOLDE: 22 elements for 55% of experiment shifts in 2022

➢ First time implementation of PI-LIST for in-source high resolution spectroscopy:

Ongoing programs in actinide and lanthanide section of nuclear chart

➢ Cross-facility program to investigate high throughput ion source efficiencies:

Experimental and simulation campaign with ion source designs from ISOLDE, SPES (Italy), SCK CEN (Belgium)

➢ Implementation of fixed design conversion units in laser setups for spectral coverage extension

➢ Narrow bandwidth laser light generation: Essential component for high-resolution spectroscopyC
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Resonance ionization laser ion sources (RILIS) [1] provide
high selectivity and efficiency in the production of
isotopically enriched radioactive ion beams (RIBs) at on-
and off-line facilities such as CERN – ISOLDE [2].
Wavelength-tunable lasers are used to address
fingerprint-like electronic shell transitions to subsequently
excite and detach an electron of the element of choice
while leaving other species unaffected.

High intensity beams: Ion confinement VUV to IR in solid state: Laser development
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o Experimental resolution in hot cavity laser source limited by Doppler

broadening to the order of several GHz

o PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) provides

crossed laser / atom beam environment to address lateral velocity classes

o Successful ISOLDE integration in 2022 [3]

• Resolution gain of one order of magnitude: 100 – 200MHz

• Efficiency in the order of 0.01 % (Standard RILIS: 10%)

• Nuclear structure investigation on neutron-rich actinium within

EU network LISA (Laser Ionization and Spectroscopy of Actinides)

o Versatile ion source with in-situ mode change:

• Ion guide: High efficiency, resembling RILIS

• LIST [4]: Contamination suppression, reduced efficiency

• PI-LIST: Laser spectroscopy and isomer-pure RIB productionCAD model of the PI-LIST as installed at ISOLDE [3] Resolution comparison [3] and 
actinium laser spectroscopy results
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Processes in an ISOL-type hot cavity laser ion source

Manganese efficiency vs 
extracted beam intensity [5]

o Efficiency of laser ionization and ion beam
extraction process depends on total ion load
in the hot cavity interaction volume

o Specifically important for off-line medical
isotope extraction (e.g. MEDICIS [6]): Time-
critical collection times

o Reason: Breakdown of ion-confining plasma
potential for surplus of positive charges

o Systematic investigations via pulsed laser ion
bunch time structures and simulations
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Laser ion bunch time structure for different ion load Plasma potential model for hot cavity [7]
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Isotope-selective RIB production

4ω Ti:Sa
210-230 nm

Ti:Sa
700-950 nm

dye
550-700 nm

2ω Ti:Sa
350-475 nm

2ω dye
300-350 nm

3ω Ti:Sa
230-300 nm

UV pumped dye
475-550 nm

385-545 nm300-340 nm 520-860 nm

o Solid state laser technology offers low-maintenance 24/7 facility operation
o State-of-the-art Titanium:sapphire (Ti:Sa) lasers [8] developed in collaboration

with RIB facilities world-wide
o Use of various photonics techniques to enhance spectral coverage of

fundamental infrared Ti:Sa output

Principle of Stimulated Raman Scattering (SRS)

o Stimulated Raman Scattering for
frequency red-shift

o Shift for diamond: 0.17 eV
o Cascading for subsequent shifts

450nm 479nm 511nm 549nm 592nm

Pump 1. Stokes 2. Stokes 3. Stokes 4. Stokes

Spectral coverage 
of RILIS laser system

Cascading of Stimulated Raman Scattering [9]

Spectral squeezer: Single-mode narrowband Raman converter

Single mode operation: diamond as Fabry-Perot resonator [10] Simulated spectral in-/output [10]
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