

190192 The Resonance Ionization Laser Ion Source at CERN-ISOLDE PRISMAP Medical Badianualidas **Expanding limits of selectivity, intensity, spectroscopy**

R. Heinke¹, M. Au^{1,2}, C. Bernerd¹, L. Centofante³, K. Chrysalidis¹, T. Cocolios⁴, D. Echarri¹, V. Fedosseev¹, E. Granados¹, S. Hurier^{4,5}, A. Jaradat¹, M. Kaja², O. Khwairakpam³, T. Kieck⁶, R. Mancheva^{1,4}, M. Manzolaro³, E. Mariotti³, B. Marsh¹, S. Raeder⁶, K. Rijpstra⁵, S. Rothe¹, D. Scarpa³, G. Stoikos¹, D. Studer⁶, F. Weber², K. Wendt²

¹CERN, ²JGU Mainz, ³INFN Padua, ⁴KU Leuven, ⁵SCK-CEN Mol, ⁶GSI Darmstadt

Element-selective radioactive ion beam production: **RILIS**

Resonance ionization laser ion sources (RILIS) [1] provide high selectivity and efficiency in the production of isotopically enriched radioactive ion beams (RIBs) at onand off-line facilities such as CERN – ISOLDE [2]. Wavelength-tunable lasers are address to used fingerprint-like electronic shell transitions to subsequently excite and detach an electron of the element of choice while leaving other species unaffected.

"Sub-Doppler" in-source laser spectroscopy: PI-LIST

CAD model of the PI-LIST as installed at ISOLDE [3]

Surface ionization

• Experimental resolution in hot cavity laser source limited by **Doppler** broadening to the order of several GHz

- **PI-LIST** (Perpendicularly Illuminated Laser Ion Source and Trap) provides **crossed laser / atom beam environment** to address lateral velocity classes
- Successful ISOLDE integration in 2022 [3]
 - Resolution gain of one order of magnitude: **100 200MHz**
 - Efficiency in the order of **0.01 %** (Standard RILIS: 10%)
 - Nuclear structure investigation on neutron-rich actinium within EU network LISA (Laser Ionization and Spectroscopy of Actinides)
- Versatile ion source with in-situ mode change:
 - *Ion guide*: High efficiency, resembling RILIS

-

- *LIST* [4]: Contamination suppression, reduced efficiency
- *PI-LIST*: Laser spectroscopy and *isomer-pure* RIB production \bullet

Resolution comparison [3] and actinium laser spectroscopy results

High intensity beams: lon confinement

≈ 2000 °C

S

Thermionic emission *Processes in an ISOL-type hot cavity laser ion source* 500nA 30 Efficiency (%) 0 05

> Manganese efficiency vs extracted beam intensity [5]

10 – 20nA

Measurement #

• Efficiency of laser ionization and ion beam extraction process depends on total ion load in the hot cavity interaction volume

Laser ionization

- Specifically important for off-line medical isotope extraction (e.g. MEDICIS [6]): Timecritical collection times
- Reason: Breakdown of ion-confining plasma potential for surplus of positive charges
- Systematic investigations via pulsed laser ion bunch time structures and simulations

n_e/n_p ഹ 1000

- Solid state laser technology offers **low-maintenance 24/7 facility operation**
- State-of-the-art **Titanium:sapphire (Ti:Sa) lasers** [8] developed in collaboration with RIB facilities world-wide
- Use of various photonics techniques to enhance spectral coverage of fundamental infrared Ti:Sa output

Principle of Stimulated Raman Scattering (SRS)

- Stimulated Raman Scattering for frequency red-shift
- Shift for diamond: 0.17 eV
- **Cascading** for subsequent shifts

Pump	1. Stokes	2. Stokes	3. Stokes	4. Stokes
•	O.	S	*	*
450nm	479nm	511nm	549nm	592nm

Cascading of Stimulated Raman Scattering [9]

Laser ion bunch time structure for different ion load

reinhard.heinke@cern.ch European Organization for Nuclear Research CERN

R [1] V. Fedosseev *et al.*, J. Phys. G: Nucl. Part. Phys. 44 084006 (2017) [2] R. Catherall et al., J. Phys. G: Nucl. Part. Phys. 44 094002 (2017) 20 [3] R. Heinke *et al.*, NIM B 541, 8-12 (2023) [4] D. Fink *et al.*, NIM B 344, 83-95 (2015) [5] N. Kneip, M.Ed. Thesis, JGU Mainz (2018) \mathbf{O} [6] C. Duchemin et al., Front. Med. 8:693682 (2017) \mathbf{D} [7] J. Lawson, CERN-76-09 (1974) [8] C. Mattolat et al., AIP Conf. Proc. 1104, 114–119 (2009) \bigcirc [9] D. Echarri *et al.*, Optics Expr 28-6, 8589-8600 (2020) [10] E. Granados *et al.*, Laser & Photonics Reviews, submitted

Conclusion & Outlook

- RILIS as workhorse ion source at RIB facility CERN-ISOLDE: 22 elements for 55% of experiment shifts in 2022
- First time implementation of PI-LIST for in-source high resolution spectroscopy:

Ongoing programs in **actinide and lanthanide** section of nuclear chart

Cross-facility program to investigate high throughput ion source efficiencies:

Experimental and simulation campaign with ion source designs from ISOLDE, SPES (Italy), SCK CEN (Belgium)

> Implementation of fixed design conversion units in laser setups for spectral coverage extension

> Narrow bandwidth laser light generation: Essential component for high-resolution spectroscopy