

Innovative Cesiation Deriving Incredible 145 mA Beam from J-PARC Cesiated RF-Driven H⁻ Ion Source

Akira UENO J-PARC Center

Contents

- Overview of the J-PARC Accelerators
- Experimental set-up and differences between previous 65 keV 110 mA & 69.9 keV 120 mA operations
- Hypothesis of H_2O (chemically bound with Mo) mediated cesiation
- 8 hours 145 mA operation & waveforms of a beam pulse
- Particle distributions in horizontal & vertical phase-planes for $(I_{H^-}, W_{H^-}, V_E, T_{PE}, duty factor)=(145mA, 76.5keV, 230°C, 15.1kV, 3.4\%)$
- Parameters of J-PARC RF-driven H^- ion source test-stand $% H^-$ in 145 mA / 83 mA operation
- Concludions

Overview of the J-PARC Accelerators

J-PARC IS 2023/9/19 @ICIS2023

- Macro Beam Pulse Width \leq 0.6ms
- Steady Operation : 50mA & 0.5ms
- LINAC & RCS Study : 60mA & 0.6ms
 for RCS 1.5MW Operation
- Supe. IS $\epsilon_{x/y}$:High RFQ Trans. 94.3% (67.9/72) in LINAC 60 mA Ope.
- Steady Operation
 0.95MW(0.85MW for MLF)
- 2028~>1.2MW

- Stesdy Operation ~June 2021
 FX0.52MW:2.52sCy. & SX64kW:5.2sCy.
- July 2021 ~ Jan. 2023 UG Shutdown
- 2024~FX0.75MW:1.32sCy. & SX80kW:4.24sCy.
- 2028~FX1.3MW:1.16sCy.(RCS>1.2MW)

Uniform Cs half monolayer on Mo is difficult to be attained over large PE surface against non-uniform high energy plasm bombardments

Sub monolayer H_2O (chemically bounded with Mo) mediated cesiation surviving against high T_{PE} & high energy plasma bombardments cooperate with Cs half monolayer on remaining surface (with almost same work function as Cs half monolayer)

Ratio of H_2O mediated cesiation to conventional cesiaton had to be increased for $I_{H^-} >= 120 \text{ mA}$.

One H_2O injection is defined as opening of H_2O value 2 for 5 min. and ejecting dense H_2O vapor in the pipe with about 1 cc between the double needle value and it stored by opening H_2O value 1 and the double needle value for 5 min..

H_2O (chemically bound with Mo) mediated cesiation

 H_2O mediated cesiation procedure : (1) T_{PE} was increased to 400 °C and keeping it about 1 hour, (2) T_{PE} was decreased to 30~50 °C, (3) Every 10 min., H_2O injection was introduced 3 or 9 times, (4) Some of H_2O on PE was chemically bound with Mo in 16 hours, (5) after T_{PE} was increased to 400 °C, Cs valve was opened for 30 min. at the T_{CsR} of 180 °C (1.7 mg). (6) degree of H_2O mediated cesiation was examined by 72.5 keV 135 mÅ operation feedbacking P_{2MHz} at T_{PE} of 180 °C.

J-PARC IS

2023/9/19 @ICIS2023

8 hours 145 mA operation & waveforms of a beam pulse

Particle distributions in horizontal & vertical phase-planes for (I_H-,W_H-,V_E,T_{PE},duty factor)=(145mA,76.5keV,15.1kV,230°C,3.4%) J-PARC IS 2023/9/19 @ICIS2023

Table 1. Parameters of J-PARC RF-driven H⁻ ion source test-stand in 145 mA / 83 mA operation.

J-PARC IS 2023/9/19 @ICIS2023

H ₂ gas flow rate	17 SCCM
CW 30 MHz RF igniter power	43 W
2 MHz RF duty factor ~ Beam duty factor	3.4%(1ms×34 Hz) / 5%(1ms×50 Hz)
*Limited by radi. safety permis.:I _{H-AV} =5mA	*145 mA×3.4 % = 4.93 mA
2 MHz RF power (P _{2MHz})	45.9~46.3kW / 31.3~30.4kW
*Tilting during pulse for flat beam pulse	
RF power efficiency (I _H - / P _{2MHz})	145/46.1=3.15mA/kW <mark>/ 83</mark> /30.9=2.69mA/kW
H^{-} ion density at PE ($\phi_{PE} = 9mm$)	2279A/m² / 1305A/m²
Plasma electrode temperature (T _{PE})	230° <i>C</i>
Stationary state Cs injection rate	14 / - μg/hour
*Mainly attached on low temp. part	*Mainly not ejected
H^{-} ion beam energy ($W_{H^{-}}$) = ($V_{E} + V_{A}$)	76.5(15.1+61.4)keV / 52.5(10.9+41.6)keV
1st sec. vacu. pumps & vacu. pressure	1500 L/s TMP×2 & ~7×10 ⁻³ Pa
2nd section vacuum pump	500 L/s TMP
Solenoid magnet current	437A(61180AT) / 350A(49000AT)
Trans. emittances : E95%nrmsx & E95%nrmsy	0.268&0.297πmm·mrad / 0.239&0.272πmm·mrad
	*0.268/0.239=1.12 ~ βγ(76.5keV)/βγ(52.5keV)=1.21
Improved I _H -(52.5keV) of 83mA (from 72mA) is indispensable to keep 60mA at LINAC exit for	
about 6 months of one J-PARC operation period before LINAC upgrade to reduce about 12 %	
beam loss downstream of RFQ.	

Conclusions

- With novel cesiation based upon hypothesis of H_2O (chemically bound with Mo) mediated cesiation, J-PARC IS produced I_H -(76.5/52.5keV) of 145/83mA.
- 8 hours operation with $(I_{H}^{-}, W_{H}^{-}, V_{E}, T_{PE}, duty factor) = (145mA, 76.5keV, 15.1kV, 230°C, 3.4%)$ was succeeded with only one sparking probably around 2MHz RF matching circuit. In stationary state, I_{H}^{-} was feedbacked to 145 ±1 mA by P_{2MHz} & Cs injection rate of 14 µg/hour.
- Flat I_{H^-} of 145mA/83mA pulse was produced by 0.9%/-3% tilting P_{2MHz} during pulse.
- Superior $\varepsilon_{95\%nrmsx/y}(I_H^-,W_H^-)$ of 0.268/0.297(145mA,76.5keV) & 0.239/0.272(83mA,52.5keV) π mm·mrad were attained. 134.1(76.5keV)/78.0(52.5keV) mA of beam is inside of PARMTEQ injection beam emittances. T_{PE} of 230°C rather higher than world standard does not affect to $\varepsilon_{95\%nrmsx/y}$.

ACKNOWLEDGMENTS

The author wishes to expres his sincere thanks to Dr. Martin P. Stockli ans SNS ion source group members for their support to purchase internal-RF-antennas and their information on the SNS RFdriven H⁻ ion source. The author also wishes to express his sincere thanks to Mr. Kiyonori Ohkoshi of J-PARC for preparing the experiments.

<u>"Thank you for your attention"</u>

Emittance Improvements with Shortest Beam Extracotor

12

J-PARC LINAC 60 mA 1.5%(0.6ms \times 25Hz)BDF Operation

Macro Pulse Chopping with W_{H} - Mod.& RFQ Long.Acce. (a) Terminal Voltage V_{T} $-30kV(V_{ADC}) \rightarrow -40kV(V_{ADC}+V_{FM})$ \rightarrow -52.5kV(V_{ADC}+V_{EM}+V_{AM}) \rightarrow -30kV(V_{ADC}) (b) Plasma Production Forward & Reflected 2MHz RF Voltages V_{2MHZF} & V_{2MHZR} and RFQ Tank Level TL_{RF} (C) I_{H} -@LEBT, I_{H} -@RFQ Exit, I_{H} -@LINAC Exit *Intermediate Chopper Period (812.5ns) Averaged IH- are ploted with white lines. *Space Char. Neu. Satura. by 40 keV 0.1 ms H⁻ beam \rightarrow Succession to 52.5 keV H⁻ beam \rightarrow I_H-&I_H-&I_H- Rapid Rise Time responding to V_{AM} *High RFQ Transmission of 94.3%(67.9/72) *0.07mA 40keV H⁻ beam was detected with RFQ exit CT at downstream surface of QM1 with design $T\dot{L}_{RFQ} \rightarrow >0.07mA \ 40keV \ H^{-}$ beam transmits through RFQ *Low MEBT1 Transmission of 88.34%(60/67.9) due to space charge limited current of MEBT1 13

8 hours 120 mA operation & waveforms of one beam pulse

Waveforms of $V_{E}(a)$, $V_{T}(b)$, V_{2MHzF} and $V_{2MHzR}(c)$ and I_{H} - and I_{EE} (d) of one beam pulse. *Flat I_{H} by tilting up P_{2MHz} by 9% to comp. $V_{E}&V_{T}$ droops.

J-PARC IS 2023/9/19

@ICIS2023

Particle distributions in horizontal & vertical phase-planes for $(I_H^-, W_H^-, V_E, duty factor) = (120 \text{ mA}, 69.9 \text{ keV}, 14.1 \text{ kV}, 4\%)$

J-PARC IS 2023/9/19 @ICIS2023