

THE OWNER WHEN PARTY AND

The CUBE-ECRIS prototype — towards a 100 GHz ECRIS

Taneli Kalvas^a, Ville Toivanen^a, Sami Kosonen^a, Hannu Koivisto^a and Olli Tarvainen^b

a) Department of Physics, University of Jyväskyläb) STFC-UKRI Pulsed Spallation Neutron and Muon Facility

20.9.2023, 20th International Conference on Ion Sources, Victoria, BC, Canada

Outline

- Introduction to ARC-ECRIS quadrupole Bmin
- Permanent magnet CUBE-ECRIS
- High charge state generation
- Extraction from quadrupole Bmin field
- Scaling from 10 GHz to 100 GHz?

Conventional ECRIS

State-of-the-art NbTi

limited at 28 GHz

Towards the next generation ECRIS

Sextupole within solenoid: LBNL Venus

Solenoid within sextupole: IMP SECRAL

CONTRACTOR DE LA CONTRACT

Mirror Fusion Test Facility

Basball-seam / Yin-yang magnetic trap from 1980s

The first 6.4 GHz ARC-ECRIS at JYFL

A REAL PROPERTY AND A REAL

Feasible for 100 GHz operation

TABLE I. Exar	nples of the magnetic	fields achievable with	a three layer a	rc-shaped coil	(coil parameters	shown in Fig. 2).
---------------	-----------------------	------------------------	-----------------	----------------	------------------	-------------------

	Coil	Layer current density (A/mm ²)			Magnetic field strength (T)						Frequency	Mirror ratios				
No. material	а	b	с	$B_{\rm inj}$	B_{\min}	B _{ext}	$B_{\rm radX}$	$B_{\rm radZ}$	B _{critical}	(GHz)	$B_{\rm inj}/B_{\rm ecr}$	$B_{\rm min}/B_{\rm ecr}$	$B_{\rm ext}/B_{\rm ecr}$	$B_{\rm radX}/B_{\rm ecr}$	$B_{\rm radZ}/B_{\rm ecr}$	
1	NbTi ^a	122	122	122	6.5	1.0	2.0	2.6	6.3	9.6	36	5.0	0.8	1.6	2.0	4.8
2		118	100	180	6.6	1.3	2.7	3.4	6.4	9.7	45	4.1	0.8	1.7	2.1	4.0
3											42	4.4	0.9	1.8	2.3	4.3
4		67	120	250	6.2	1.7	3.7	4.5	6.9	9.9	60	2.9	0.8	1.7	2.1	3.2
5	Nb ₃ Sn ^a	145	230	410	11.7	2.9	6.2	7.7	12.6	18.4	100	3.3	0.8	1.7	2.1	3.5
6											80	4.1	1.0	2.2	2.7	4.4
7	Copper ^a	30	30	30	1.6	0.3	0.5	0.6	1.5	b	9	5.0	0.8	1.6	2.0	4.8
8	Copper ^c	30	30	30	2.9	0.3	0.7	0.8	3.0	b	10	8.1	0.8	1.8	2.3	8.4

^aThere is no soft iron in the simulation.

The subscription of the su

^bThere is no critical magnetic field in the case of copper coil and the current density is only limited by the coil cooling system.

^cThe coil is covered with a 50 mm thick iron yoke and it includes an iron pole at the injection [see Fig. 1(b)].

P. Suominen, F. Wenander, "Electron cyclotron resonance ion sources with arc-shaped coils", Rev. Sci. Instrum. 79, 02A305 (2008).

MARS-D 45 GHz, Mixed Axial and Radial field System Demonstrator

M. Juchno, et al., "Shell-Based Support Structure for the 45 GHz ECR Ion Source MARS-D", IEEE Transactions on Applied Superconductivity 32, 4101005 (2022).

D. Todd, "Recap of the MARS-D review", unpublished.

THE REPORT OF A DAMAGE

T. Kalvas, O. Tarvainen, V. Toivanen, H. Koivisto, "Design of a 10 Ghz minimum-B quadrupole permanent magnet electron cyclotron resonance ion source, J. Instrum. 15 (2020) P06016.

and the second se

Permanent magnet 10 GHz CUBE-ECRIS

Loss lines from CUBE-ECRIS plasma

Loss lines comparison

JYFL 14 GHz solenoid + quadrupole field 1.07 T

JYFL 14 GHz solenoid + hexapole field 1.07 T

CONTRACTOR OF THE OWNER WATER OF THE OWNER OWNER OF THE OWNER OWNER

Loss lines comparison

CUBE 10 GHz

JYFL 14 GHz solenoid + quadrupole field 1.07 T

40

30

20

10

-10

-20

-30

-40

-40 -30

y (mm)

JYFL 14 GHz solenoid + hexapole field 1.07 T

4.2 % to extraction ø8 mm

CONTRACTOR DE LA CONTRACT

-10

v (mm)

0.1 % to extraction ø8 mm

0

x (mm)

10

20

30

-20

-10

the second second

(E 2.5 0.0 -2.5

Test stand

Extraction from CUBE

CONTRACTOR OF THE OWNER WATER OF THE OWNER OF T

Beam rotation due to diverging B-field

LEBT simulations: Ar⁸⁺, 100 % SCC

UNIVERSITY OF JYVÄSKYLÄ

UNIVERSITY OF JYVÄSKYLÄ

First results: bremsstrahlung

T. Kalvas, et al., "First results of a new quadrupole minimum-B permanent magnet electron cyclotron resonance ion source", Plasma Sources Sci. Technol. 31, 12LT02 (2022)

THE REPORT OF A DESCRIPTION OF A DESCRIP

First results: high charge state extraction

UNIVERSITY OF JYVÄSKYLÄ

CONTRACTOR DATE AND A

First results: afterglow peak

Contract Contribution of Contract of Contr

Transport efficiency for Ar⁸⁺, quadrupole focusing

UNIVERSITY OF JYVÄSKYLÄ

and a second land of the second se

Contraint Super-

100 % SCC

0 % SCC

Quadrupole focusing effects on viewer

0 V on quad 1 0 V on quad 2 800 V on quad 1 0 V on quad 2

Mode jumping in extraction?

- Use of quadrupole focusing seems to cause changes in extraction at higher quad voltages.
- Abrupt change in FC reading and beam shape in viewer.
- No effect in plasma: bias plate and HV currents are constant.

Electrostatic quads are expected to drain SCC electrons. Magnetic quads?

CONTRACTOR DATE OF THE OWNER WATER OF

Meniscus effect?

- Non-uniform ion and electron distributions near plasma sheath
- Meniscus can not be flat
- Meniscus attachment point can be sensitive (mode)
- Gun-type codes are unable to model the physics.

To be experimentally studied by varying extraction slit width: 2 and 4 mm.

CONTRACTOR OF THE OWNER OWNER

Beam currents, Argon

Record beams					
lon	I (uA)				
Ar 6+	27				
Ar 7+	24				
Ar 8+	31				
Ar 9+	16				
Ar 10+	5.8				
Ar 11+	1.9				
Ar 12+	0.4				

These results are made with gas mixing and two frequency heating, see poster by V. Toivanen, Poster #75

Contractor and the second second

Beam currents, Krypton

Record beams					
lon	I (uA)				
Kr 13+	9.5				
Kr 15+	6				
Kr 17+	1.8				
Kr 18+	1.1				
Kr 19+	0.31				

Record beams					
lon	l (uA)				
Xe 18+	6.1				
Xe 19+	5.2				
Xe 20+	3.7				
Xe 21+	2.5				
Xe 23+	0.9				
Xe 24+	0.2				
Xe 27+	0.02				
A					

and service but

The second large states and

UNIVERSITY OF JYVÄSKYLÄ

Beam emittance for argon

UNIVERSITY OF JYVÄSKYLÄ

CONTRACTOR OF THE OWNER WATER OF THE OWNER OF

Emittance increases with increasing Q due to rotation

$$\varepsilon_{\rm rms,n} = \frac{qB_0}{8mc}r_0^2$$

In conventional ECRIS an opposite trend is often observed: "effective aperture radius".

CUBE for material analysis: ToF-ERDA

UNIVERSITY OF JYVÄSKYLÄ

CONTRACTOR OF THE OWNER WATER OF THE OWNER OWNER WATER OF THE OWNER WATER OWNER WATER OWNER WATER OWNER OWNER

recoils

Poster #59: O. Tarvainen et al., "Permanent Magnet ECR Ion Source and LEBT Dipole for Single-Ended Heavy Ion ToF-ERDA Facility"

O. Tarvainen, et al., "Ion source and low energy beam transport prototyping for a single-ended heavy ion ToF-ERDA facility", Nucl. Instrum. Meth. B 538, 110 (2023).

O. Tarvainen, et al., "Permanent magnet ECR ion source and LEBT dipole for single-ended heavy ion ToF-ERDA facility", Poster XXX

0.3

The second line of the second s

M/Q

14 GHz PM CUBE-ECRIS

CONTRACTOR DATES

Next step?

- Magnet grade from N45H to N48H
- Smaller openings in z in ±y and +x directions
- Shortened extraction opening
- Chamber needs to be integrated within the magnets
- Mass of magnets from 190 to 115 kg.

14 GHz PM CUBE-ECRIS

Conclusions

- PM CUBE-ECRIS has demonstrated its capabilities as a source of high-Q ions
- Has potential applications
- It is still to be seen if slit beams can be efficiently used
- Scaling of ARC-ECRIS concept to higher frequencies is to be demonstrated

CONTRACTOR DATE OF THE OWNER OF T

Thank you

European Cyclotron Progress Meeting in Jyväskylä May 27-30, 2024

https://www.jyu.fi/en/congress/ecpm2024