

# The Latest Progress of 45 GHz FECR

# L. Sun

H. W. Zhao, W. Wu, W. Lu, J. B. Li, X. Y. Wang, B. M. Wu, X. J. Ou, E. M. Mei, S. J. Zheng, L. B. Li, X. Z. Zhang, L. Zhu, C. J. Xin, Y. Q. Chen and the other FECR team members *Institute of Modern Physics, CAS, 730000, Lanzhou, China* 

*ICIS'23*, Sept. 17~22, 2023, TRIUMF, Canada





# □Global needs on HCI beams production

# **D**Progresses with the 3<sup>rd</sup> G ECRISs and the

### challenges

# □Status of FECR development

# **D**Summary





### **Global needs on HCI beams**









#### **GSI FAIR (under construction)**





**IMP HIAF (under construction)** 

# **Global needs on HCI beams**



### **Global needs on HCI beams**



















More to come:

- 28 GHz SECRAL-III@IMP
- 28 GHz ASTERICS@GANIL
- 28 GHz SC-ECRIS@JINR

. . . . .

#### VENUS@LBNL: 28+18 GHz

#### SCECRISs@RIKEN: 28+18 GHz





SECRAL-I, SECRAL-II@IMP: 28/24+18 GHz







Challenges
High frequency high power coupling to ECR plasma
Efficient cooling to hot dense plasma
Refractory metallic ion beam production



#### Efficient microwave coupling



#### L. Sun, et al., Review of Scientific Instruments 87, 02A707 (2016);

#### ICIS'23

# Efficient microwave coupling via WG opening tuning:

- Ø20 mmTE<sub>01</sub> show obvious advantage in HCI production at high power level
- No sign of saturation even at high power level





ICIS'23

### Progresses with the 3<sup>rd</sup> G ECRISs and the challenges

Efficient microwave coupling





J.W.Guo, et al., Rev. Sci. Instrum. 91, 013322 (2020)



#### Power density on 1<sup>st</sup> ECR surface









Efficient microwave coupling

- Vlasov launcher is an efficient tuner to microwave plasma coupling
- µW radiation <P> distribution might be a key to efficient HCI production
- Recorded beam intensities production:

18 eµA Xe<sup>42+</sup>、 47 eµA Xe<sup>38+</sup>、

146 eμA Xe<sup>34+</sup>、374 eμA Xe<sup>30+</sup>

Xinyu Wang@Poster session on Monday







#### Efficient Chamber Cooling

#### Maximum permissible operating power exceeds 10 kW

Chamber ID:125 mm, Microchannel:0.4 mm \*20, Channel height:1.5 mm, Channel flow rate: 4 L/min







7 Before After 6 Operation µW Power (kW) Previous safe operation power 0 40 78 129 209 Ion Mass

Efficient Chamber Cooling

Routine safe operation power obviously increased with new chamber structure

Reliable long-term operation at 5~10 kW level applicable



Server etching marks after continuous high power Ar beam operation







#### HIRFL Operation scheme: ECR + Cyclotron + Synchrotron





# HIRFL performance enhancement

SECRAL-II: ~350 eµA (~4 times historical operation current)

- High current: SFC--8.5 AMeV/15 eµA
- CSR<sub>m</sub> Beam Current Increase by a factor of 5

#### <sup>78</sup>Kr<sup>26+</sup>

36**A**r<sup>15+</sup>

SECRAL-II: ~280 eµA (not available before)

- High current: SFC--6 AMeV/12 eµA
- CSR<sub>m</sub> Beam Current Increase by a factor of 10

#### <sup>129</sup>Xe<sup>32+</sup>

SECRAL-II: ~200 eµA (not available before)

- High current : SFC—3.9 AMeV/8 eµA
- CSR<sub>m</sub> Beam Current Increase by a factor of 5









ICIS'23

### Progresses with the 3<sup>rd</sup> G ECRISs and the challenges

#### High temperature inductive heating oven



- Metallic ions delivered from LECR5 (2021-2023): <sup>40</sup>Ca<sup>13+</sup>, <sup>55</sup>Mn<sup>17+</sup>, <sup>54</sup>Cr<sup>17+</sup>, <sup>48</sup>Ca<sup>14+</sup>;
- RF Power: 18+14.5 GHz/ 1.5- 2.0 kW
- IS extraction voltage: 30.8- 34.2 kV
- Technical features:

#### Inductive heating oven, CaO+Al



#### **RT ECR ion source - LECR5**

| FQ entrance Transmissio Delivering |
|------------------------------------|
|                                    |
| RMS n efficiency time              |
| emittance [FC03/FC01] [Hrs]        |
| π.mm.mard)                         |
| ξx=0.12, 85~90% 1500<br>ξy=0.05    |
| £x=0.08, 85~90% 428<br>£y=0.06     |
| £x=0.08, 85~90% 1183<br>£y=0.06    |
| Ex=0.09, 85~90% ~600<br>Ey=0.08    |
| 2                                  |



#### Technologies advancement with intense U beam production













- **Material:**  $UO_2 + O_2$
- Frequency: 24+18 GHz
- RF power: ~7.9 kW
- Total drain: ~13.2 emA





| U<br>Charge State | SECRAL-2023<br>(eµA) | Records as of 2022<br>(eµA) | Contributors as of 2022    |
|-------------------|----------------------|-----------------------------|----------------------------|
| 33                | 640                  | 450                         | SECRAL-II/IMP <sup>1</sup> |
| 34                | 620                  | 400                         | VENUS/LBNL <sup>2</sup>    |
| 35                | 547                  | 310                         | VENUS/LBNL,SECRAL-II/IMP   |
| 42                | 100                  | 62.6                        | SCECRIS/RIKEN <sup>3</sup> |
| 46                | 61                   | 36.2                        | SCECRIS/RIKEN              |
| 50                | 38                   | 20.1                        | SCECRIS/RIKEN              |
| 54                | 19                   | 10.4                        | SCECRIS/RIKEN              |
| 56                | 9.5                  | 0.9                         | SECRAL-II/IMP              |
| 58                | 2.7                  | 0.7                         | SECRAL-II/IMP              |

1. W. Lu et al., Rev. Sci. Instrum. 90, 113318 (2019)

- 2. J. Benitez, et al., ECRIS2012, THX002-talk
- 3. T. Nakagawa, Cyclotron'22, invited talk











| Specs.                        | Unit | 3 <sup>rd</sup> G ECRIS | 4 <sup>th</sup> G ECRIS | FECR    |
|-------------------------------|------|-------------------------|-------------------------|---------|
| frequency                     | GHz  | 24-28                   | 40~56                   | 45      |
| <b>Operational RF Power</b>   | kW   | 4~10                    | 10~40                   | 20      |
| B <sub>ECR</sub>              | Т    | 0.86~1.0                | 1.4~2.0                 | 1.6     |
| B <sub>rad</sub>              | Т    | 1.8~2.2                 | 2.8~4.0                 | ≥3.2    |
| $\mathbf{B}_{inj}$            | Т    | 3.4~4.0                 | 5.6~8.0                 | ≥6.4    |
| $\mathbf{B}_{\min}$           | Т    | 0.5~0.7                 | /                       | 0.5~1.1 |
| B <sub>ext</sub>              | Т    | 1.8~2.2                 | 3.0~4.5                 | ≥3.4    |
| B <sub>max</sub> in conductor | Т    | ~7.0                    | >10.0                   | 11.8    |
| Plasma Chamber ID             | mm   | 100~150                 | >100                    | ≥140    |
| Mirror Length                 | mm   | 420~500                 | ≥500                    | 500     |
| Cooling Capacity@4.2 K        | W    | 0~6.0                   | >10.0                   | ≥10.0   |







#### Nb<sub>3</sub>Sn vs. NbTi:

- Fragile
- Treatment sensitive
- Stress sensitive

**Courtesy of MagLab** 









**AXIAL RODS** 

The magnet mechanical structure was designed by collaboration with ATAP magnet group at LBNL as of 2017



This Nb<sub>3</sub>Sn magnet is being built by a Chinese company without collaboration with ATAP/LBNL. DOE did not approve such collaboration.





**ICIS'23** 







#### **8 sextupole coils for full assembly**











#### **Completed FECR coldmass**





#### • Stress on Wire: Improper handling and failing to protect the coil leads



• Intense Flux Jump (FJ) Interference: challenging in fast quench detection









### Hybrid coils:

- NbTi sextupole + Nb<sub>3</sub>Sn solenoids
- Intense FJ mitigation
- Assembly test
- Operation safe
- Nb<sub>3</sub>Sn Sextupole with cable in progress



NbTi sextupole coils





#### Sub-assembly of the cold mass





#### Key parameters of FECR Cryogenic System

| Parameters             | Value                                   | Note                         |
|------------------------|-----------------------------------------|------------------------------|
| Operation Temp. (K)    | 4.3 K                                   |                              |
| Magnet Cooling         | LHe bathing and "O"<br>boiling-off      |                              |
| Stored Energy (MJ)     | ~1.6                                    | 100% currents                |
| Required heat load (W) | ≥ 12                                    | ~2 W static at 100% currents |
| Warm Bore (mm)         | Ø162                                    |                              |
| LHe Volume (L)         | ~330                                    |                              |
| Cryocoolers            | 6 two-stage + 1 single<br>stage coolers | Cold service<br>enabled      |
| Dimension (mm)         | L1456 $	imes$ Ø1200 $	imes$ H2690       |                              |
| Total weight (ton)     | ~6.1                                    |                              |

















| Key Parameters               | FECR<br>Chamber             | SECRAL-II<br>Chamber        |
|------------------------------|-----------------------------|-----------------------------|
| Max. Microwave Power         | 25 kW                       | 12 kW                       |
| Max. Localized Power Density | 20 MW/m <sup>2</sup>        | 10 MW/m <sup>2</sup>        |
| Chamber ID                   | Ø140 mm                     | Ø125 mm                     |
| Chamber OD                   | Ø156 mm                     | Ø136 mm                     |
| Length                       | 1225 mm                     | 887 mm                      |
| Microchannel region          | 15×15.6×1.5 mm <sup>3</sup> | 15×15.6×1.0 mm <sup>3</sup> |
| Fins                         | 0.4 mm×19                   | 0.4 mm×19                   |
| Channel                      | 0.4 mm×20                   | 0.4 mm×20                   |
| Inside-wall thickness        | 1.5 mm                      | 1.5 mm                      |
| Outside-wall thickness       | 1.5 mm                      | 1.5 mm                      |
| Water pressure               | 10 bar                      | 8.9 bar                     |
| Water flow per channel       | > 15 L/m                    | > 4.0 L/m                   |
| Total water flow             | > 50 L/m                    | > 13 L/m                    |











- Technical advancement makes intense HCI beams production feasible and durable
- New records on highly charged ion beams production
  - ✓ 620 еµА U<sup>34+</sup>, 547 еµА U<sup>35+</sup>, …
  - ✓ 18 еµА Хе<sup>42+</sup>、 47 еµА Хе<sup>38+</sup>、 146 еµА Хе<sup>34+</sup>、 374 еµА Хе<sup>30+</sup>
- FECR development still having challenges in terms of Nb<sub>3</sub>Sn magnet





## Acknowledgement



#### Xi'an Superconducting Magnet Technology Inc.

Coil fabrication

Cold mass fabrication and assembly



Bruker OST LLC.

• Nb<sub>3</sub>Sn Wire



#### Western Superconducting Tech Co., Ltd.

- Nb<sub>3</sub>Sn Wire
- Wire braiding



#### Lanzhou Kejin Taiji New Technology Co., Ltd.

Mirror structureMechanical mapping



Lawrence Berkeley National Laboratory

Coldmass structure design



#### Shanghai Chenguang Medical Technologies Co., Ltd.

Cryogenic system fabrication and integration



#### GyCOM Co., Ltd.

• Gyrotron microwave generator and microwave transmission solutions

### And all those have given us fruitful suggestions!!

