ALPHA-g & HAICU Antimatter science at TRIUMF

Science Week 2023

Chukman So

Antimatter science

- Fundamental symmetries
- ALPHA at Cern's AD
 - First trapping in 2010 Nature 468, 673 (2010)
 - 1S-2S Nature 557, 71–75 (2018)
 - **1S-2P** Nature **561**, 211-215 (2018)
 - Hyperfine Nature 548, 66–69 (2017)
 - Lamb shift Nature 578, 375–380 (2020)
 - Charge neutrality Nature Communications 5, 3955 (2014)
- Next: gravity
 - More exotic than a feather!

The ALPHA-g experiment

3

Current leads and voltage taps

AD/Elena

ALPHA-g experiment

2 30 3

Antiproton

Power supplies

Positron Positron accumulator

The ALPHA-g experiment

- Penning trap
 - Catching and cooling plasmas
 - Mixing to create antihydrogen
- Magnetic trap
 - Trapping anti-atoms
 - Release for gravity
- Detector
 - Determine the behaviour of antihydrogen
 - Rejecting anything else

Magnetic minimum trap

- Anti-atoms attracted to minimum in |B|
- Radial confinement: octupole
- Vertical confinement: mirror coils

g

Gravity measurement

- Mirror coils slowly turned off
- Observe antiatom escape, up or down

g

Gravity measurement

Gravity measurement

- Uncompensated trap favours "down"
- Balanced escape require stronger
 bottom coil
- Determine gravity by horizontal offset of the curve

Challenges

- Trapping antihydrogen
 - O(10¹¹) decrease in energy
 - Method developed and refined in ALPHA and ALPHA-2
- Precise field control
 - O(10⁻⁵) control in trap field

Inner magnets 3 m

Inner magnet geometry

- Centre: Precision measurement
- Bottom: Stronger trap
- Top: reflected copy
- Why the complicated trap?

1. Persistent field

- Induced field in superconductor
 - Current loops induced in response to field changes
 - History-dependent

- Mitigation:
 - Weak magnets
 - Thin, numerous NbTi filaments
 - Symmetrise magnetic history
 - Neighbouring strong trap for initial trapping

2. Wire placement

- Octupole winding
 - Wire-laying precisely controlled, but nothing is perfect
 - Field error most severe near end turns
 - Measurement regions avoid these regions
 - Long + short octupole minimises number of end turns near the precision region

2. Wire placement

- Coil winding
 - Each layer is macro-photographed and analysed to locate turns

3. Separated DoF

3. Separated DoF

• A coil's field is saddle-shaped

3. Separated DoF

- Two coils at different currents cannot form equal barriers for all r
- Even messier picture with octupole contribution
- Correctors implemented to improve trap bias uniformity across r

4. Current supply

- Extremely fine current control on barrier coils
 - Common mode: 70 A to ~0 A, no specific precision requirement
 - Difference: ~ 0.1 A, precise to ~1 mA
- Two completely separate PS: 10 ppm
- One bulk current supply and one "tickle" supply: 10000 ppm
- Two currents measured by DCCT and fed back to power supplies PID control

5. Background solenoid uniformity

- Affects gravity measurement due to field gradient
- As-built
 - ~20 G non-uniformity
- With outer shims
 - ~4 G non-uniformity
 - Compensate by adjusting mirror coil currents
- Possible future inner shims
 - ~0.02 G non-uniformity
 - Reduced coil adjustment

Performing a first measurement

An "up-down" measurement

- Using only the bottom set of magnets
- Pro
 - Deeper trap, more statistics
 - Fewer magnet elements needed
- Con
 - Less accurate field more persistence effect, no correctors
 - Cannot use the long octupole
- Aiming to resolve the direction of gravity on antihydrogen

Magnetometry

- Persistence effect is inevitable
- Measure field and adjust current, to maintain trap bias throughout release ramp
- ECR
 - Measures cyclotron frequency in Penning trap
 - Slow measurement process
- Magnetron counting
 - Measures the phase of ExB drift of Penning trap plasmas
 - Fast measurement
 - Less accurate than ECR
- Able to control relative trap bias to ~0.1 Gauss

Field model

Magnetometry results are integrated into a 3D field model ٠

$$\begin{split} B(z,p) &= B_{\rm babcock}(z) + B_{\rm SOct}(z) \\ &+ B_{\rm MAB}(z) I_{\rm MAB}(p) + B_{\rm MGB}(z) I_{\rm MGB}(p) \\ &+ A(z)(1 - \exp(-p/0.1346)) \\ &+ B_{\rm res0}(z)(1 - p) + B_{\rm res1}(z)p \end{split} \qquad \mbox{Kire model field} \label{eq:source}$$

ld, from currents we provide

saturating component on results

ount for ECR

Field we don't control

- O(1 Gauss) precision, much better around the saddle points ٠
- Particle pusher uses field to evolve anti-atoms through the entire experimental sequence ٠
 - Obtain the expected escape bias as a function of gravitational acceleration
 - Field model is critical as antiatoms escape off-axis

Experiment progress

- In 2022: performed experimental release at 13 trap biases
- Results being analysed and compared to simulation

Future precision

- Using the proper precision region
- Steepness of escape balance curve closely affects sensitivity
- Long ramp = more chance anti-atoms can escape on-time, higher sensitivity
- Down side:
 - Long window = more cosmics
 - Depends on our ability to reject cosmics
- Other factors like current noise and antiatom temperature

HAICU

Interferometer

- Raman interferometer:
 - Weighing atoms without field
 - Coherent interrogation during free-fall
 - 10⁻² vs 10⁻¹⁴ precision
- Requires extremely slow atoms
 - Beyond Doppler laser cooling with magnetic compression
- Special magnetic trap with a "neck"
 - 1. Bitter magnet trap
 - 2. Bitter magnet trap with a neck
 - 3. Superconducting trap with a much stronger neck

Bitter magnet development

- Water-cooled, normally conducting
- 350 A, 5 kW test coil
- Test of fabrication and assembly technique

Magnetic trap prototype

- High power density winding
 - 1800 A, 80 kW quadrupole
 - 350 A, 10 kW mirror coils
 - 0.2 T trap depth on a 0.3 T background
 - 10 L/s cooling water
- Axial and perpendicular optical access for laser cooling
- In final design stage
- Experiment located in meson hall extension
- Uses hydrogen atom as proxy
- Aiming for commissioning by end of 2023

The big picture

 ALPHA-g design and construction: a decade-long effort

- Magnet
- Detector
- Current control
- Beamline
- Cryostat
- Vacuum system
- Penning trap
- Sequencer
- Laser and optics
- Microwave
- Diagnostic stations
- First physics in 2022
- Moving towards 1% precision
- Planning for an interferometer

-- 50 51