ALPHA-g & HAICU
Antimatter science at TRIUMF



Antimatter science

* Fundamental symmetries
 ALPHA at Cern’s AD

First trapping in 2010 - Nature 468, 673 (2010)
1S-28S - Nature 557, 71-75 (2018)

1S-2P - Nature 561, 211-215 (2018)

Hyperfine - Nature 548, 66-69 (2017)

Lamb shift - Nature 578, 375-380 (2020)

Charge neutrality - Nature Communications 5, 3955 (2014)

* Next: gravity

More exotic than a feather!




The ALPHA-g experiment
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The ALPHA-g experiment

* Penning trap
— Catching and cooling plasmas
— Mixing to create antihydrogen
« Magnetic trap
— Trapping anti-atoms
— Release for gravity
» Detector

— Determine the behaviour of antihydrogen

— Rejecting anything else

Antiproton Positron




Magnetic minimum trap

» Anti-atoms attracted to minimum in |B|
» Radial confinement: octupole

» \ertical confinement: mirror coils

octupole




Gravity measurement

» Mirror coils slowly turned off
» Observe antiatom escape, up or down

octupole
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Gravity measurement
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Gravity measurement

Uncompensated trap favours

“down”
Balanced escape require stronger 1.0 | | |
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Challenges

« Trapping antihydrogen
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O(10") decrease in energy

Method developed and refined
in ALPHA and ALPHA-2

Precise field control

O(10°) control in trap field
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AD antiproton source

HV Penning trap antiproton
Electron-cooled antiproton
Evaporation-cooled antiproton
Antihydrogen trap depth

Gravitational PE

3| 1% of gravitational PE
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Inner magnet geometry

up-down measurement

- F—W precision reflected copy
initial trap measurement (same current) ;
9 | | mirror
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~ — boost

\, octupole

long
octupole

» Centre: Precision measurement
« Bottom: Stronger trap

» Top: reflected copy

» Why the complicated trap?
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1. Persistent field

* Induced field in superconductor » Mitigation:

— Current loops induced in response to field changes -
— History-dependent -

up-down measurement

Weak magnets
Thin, numerous NDbTi filaments
Symmetrise magnetic history

Neighbouring strong trap for initial trapping
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initial trap measurement same current :
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2. Wire placement

* Octupole winding

— Wire-laying precisely controlled, but nothing is
perfect

— Field error most severe near end turns
— Measurement regions avoid these regions

— Long + short octupole minimises number of end
turns near the precision region

up-down measurement

«- -— precision reflected copy
initial tra; measurement .

g P . (same current) . mirror
A B CDE F G xfer An An xfer G F EDC B A coils

boost
\ octupole

long
octupole
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2. Wire placement

+ Coil winding

Each layer is macro-photographed and
analysed to locate turns
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3. Separated DoF

—400 -200

* Energetic escape requires hitting
pin hole with all energy allocated to
z

« Slow (x,y) and z energies mixing

» Anti-atoms mostly escape off-axis,
at much later time

* Must tailor on- and off-axis fields
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3. Separated DoF

* Acoil’s field is saddle-shaped

0.003

7 0.000
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3. Separated DoF

* Two coils at different currents cannot form
equal barriers for all r

« Even messier picture with octupole
contribution

» Correctors implemented to improve trap bias
uniformity across r

Corrector _
octupole <« _ Main
mirror coil



4. Current supply
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Extremely fine current control on barrier coils

— Common mode: 70 Ato ~0 A, no specific
precision requirement

— Difference: ~ 0.1 A, precise to ~1 mA
Two completely separate PS: 10 ppm

One bulk current supply and one “tickle”
supply: 10000 ppm

Two currents measured by DCCT and fed back
to power supplies PID control
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5. Background solenoid uniformity
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Affects gravity measurement due to field
gradient

As-built

— ~20 G non-uniformity
With outer shims

— ~4 G non-uniformity

— Compensate by adjusting mirror coil currents
Possible future inner shims

— ~0.02 G non-uniformity
— Reduced coil adjustment

1.010

1.005¢

~ 1.000f

0.995f

0.990

As-built

With outer shims
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Performing a first measurement
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An “up-down” measurement

» Using only the bottom set of magnets
* Pro
— Deeper trap, more statistics
— Fewer magnet elements needed
« Con
— Less accurate field — more persistence effect, no correctors

— Cannot use the long octupole

» Aiming to resolve the direction of gravity on antihydrogen

up-down measurement

- - precision reflected copy
+ initial trap measurement (same current) .
g = , - s r 1 mirror
FEDCB A —coils
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boost
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Magnetometry

» Persistence effect is inevitable

» Measure field and adjust current, to maintain trap bias
throughout release ramp

« ECR
— Measures cyclotron frequency in Penning trap
— Slow measurement process
« Magnetron counting
— Measures the phase of ExB drift of Penning trap plasmas
— Fast measurement

— Less accurate than ECR

» Able to control relative trap bias to ~0.1 Gauss
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Field model
« Magnetometry results are integrated into a 3D field model
B(z,p) = Bhabcock(?) + Bsoct(?)

+Byvap(2)Ivap(e)+Buas(2) Ives(p)

Wire model field, from currents we provide

N\ (- . ‘. N 19240 Exponentially saturating component
+ A("’ ) (‘l — eXp ( _p/() J“)_l6)> from magnetron results Field we
- 4 don’t control
+ BI’OSO (Z) (l — p) + BI‘OSl (25 )p Residual to account for ECR

* O(1 Gauss) precision, much better around the saddle points

» Particle pusher uses field to evolve anti-atoms through the entire experimental sequence
— Obtain the expected escape bias as a function of gravitational acceleration

— Field model is critical as antiatoms escape off-axis
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Experiment progress

« In 2022: performed experimental release at
13 trap biases

* Results being analysed and compared to
simulation
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Future precision

» Using the proper precision region

» Steepness of escape balance curve 1.0
closely affects sensitivity
* Long ramp = more chance anti-atoms 0.8
can escape on-time, higher sensitivity -
« Down side: =0.6f
— Long window = more cosmics g L}
— Depends on our ability to reject cosmics g 0.4 |
» Other factors like current noise and anti- Measurement ramp time
atom temperature 0.2 | —&—10s 300s
30Ss ——1000 s
100 S =——@=——=3000 S
0.0

-1.10 -1.05 -1.00 -0.95 -0.90
Magnetic compensation / B,
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HAICU



Interferometer

« Raman interferometer:
— Weighing atoms without field

— Coherent interrogation during
free-fall

— 10?2 vs 10" precision

* Requires extremely slow
atoms

— Beyond Doppler laser cooling
with magnetic compression

» Special magnetic trap with a
“neck”

1. Bitter magnet trap
2. Bitter magnet trap with a neck

3. Superconducting trap with a
much stronger neck
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Perpendicular
cooling laser

- [ 1. Initial catching

'

2. Max compression

Axial

-~ .
cooling laser

3. Adiabatic expansion




—
Bitter magnet

development

» Water-cooled,
normally conducting

« 350A, 5 kW test coll

» Test of fabrication and
assembly technique
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Magnetic trap prototype

High power density winding
— 1800 A, 80 kW quadrupole
— 350 A, 10 kW mirror coils
— 0.2 T trap depth on a 0.3 T background
— 10 L/s cooling water

» Axial and perpendicular optical access for laser
cooling

 Infinal design stage

« Experiment located in meson hall extension
» Uses hydrogen atom as proxy

» Aiming for commissioning by end of 2023




Thf big picture .
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