Hyper-Kamiokande

STATUS OF THE HYPER-KAMIOKANDE PROJECT

XIAOYUE LI TRIUMF SCIENCE WEEK AUGUST 1, 2023

RUMF

NEUTRINOS IN A NUTSHELL

Neutrinos are neutral, left-handed, weakly interacting fermions

Though originally thought to be massless in the Standard Model, neutrinos are found to have non-zero mass by experiments through the discovery of "neutrino oscillation"

- Neutrino masses are very small compared to other fermions → Majorana particles?
 - Testable by neutrino-less double beta experiments such as nEXO

Neutrinos are produced in flavour eigenstates, but propagate in mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \xrightarrow{\text{Pontecorvo-Maki-Nakagawa-Saka} (PMNS) \text{ matrix}$$

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
where $s_{\mu} = \sin \theta_{\nu}$ and $c_{\mu} = \cos \theta_{\nu}$

Neutrinos are produced in flavour eigenstates, but propagate in mass eigenstates

 $\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \quad \begin{array}{c} \text{Pontecorvo-Ma} \\ \text{(PMNS) matrix} \end{pmatrix}$ Pontecorvo-Maki-Nakagawa-Sakata $U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ -s_{12} \\ 0 \end{pmatrix}$ where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

Oscillation probability in vacuum $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum U_{\alpha i}^{*} e_{\alpha i}$ where $\Delta m_{ij}^2 = m_i^2 - m_j^2$, *L* is the baseline, and *E* is the neutrino energy

$$\begin{bmatrix}
 s_{12} & 0 \\
 c_{12} & 0 \\
 0 & 1
 \end{bmatrix}$$

$$e^{-i\frac{m_j^2 L}{2E}} U_{\beta j}$$

Neutrinos are produced in flavour eigenstates, but propagate in mass eigenstates

 $\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix $U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$ where $s_{ii} = \sin \theta_{ii}$ and $c_{ii} = \cos \theta_{ii}$

Oscillation probability in vacuum $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{\alpha j} U_{\alpha j}^* e^{-i\frac{m_j^2 L}{2E}} U_{\beta}$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2$, *L* is the baseline, and *E* is the neutrino energy

Neutrinos are produced in flavour eigenstates, but propagate in mass eigenstates

 $U_{\mu 2}$ $U_{\mu 3}$ Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix $U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix}$ where $s_{ii} = \sin \theta_{ii}$ and $c_{ii} = \cos \theta_{ii}$

Oscillation probability in vacuum $P(\nu_{\alpha} \rightarrow \nu_{\beta}) =$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2$, *L* is the baseline, and *E* is the neutrino energy

$$\begin{array}{ccc}
s_{12} & 0 \\
c_{12} & 0 \\
0 & 1
\end{array}$$

$$e^{-i\frac{m_j^2 L}{2E}}U_{\beta j}$$

asymmetry

Neutrinos are produced in flavour eigenstates, but propagate in mass eigenstates

 $\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\mu 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$ Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix $U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ -s_{12} \\ 0 \end{pmatrix}$ where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

Oscillation probability in vacuum $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum U_{\alpha i}^{*} U_{\alpha i}^{*}$

where $\Delta m_{ii}^2 = m_i^2 - m_i^2$, *L* is the baseline, and *E* is the neutrino energy

Current knowledge of neutrino oscillation parameters

$$\begin{array}{ccc}
s_{12} & 0\\c_{12} & 0\\0 & 1
\end{array},$$

$$e^{-i\frac{m_j^2 L}{2E}}U_{\beta j}$$

$$\begin{aligned} \sin^2(\theta_{12}) &= 0.307 \pm 0.013 \\ \Delta m_{21}^2 &= (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) &= 0.534^{+0.021}_{-0.024} \quad (\text{Inverted order}) \\ \sin^2(\theta_{23}) &= 0.547^{+0.018}_{-0.024} \quad (\text{Normal order}) \\ \Delta m_{32}^2 &= (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverter}) \\ \Delta m_{32}^2 &= (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ \sin^2(\theta_{13}) &= (2.20 \pm 0.07) \times 10^{-2} \end{aligned}$$

- Unanswered questions
 - Is there CP-violation in the lepton sector?
 - ▶ T2K has seen a hint
 - ▶ Is m_3 larger than m_1 (neutrino mass ordering)?
- Next-generation long-baseline experiments will provide the answers

HYPER-KAMIOKANDE

Far Detector

Hyper-Kamiokande (ICRR, Univ. Tokyo)

Porter 35" 23'41.59" N

TREAWS

SHR

Tokyo

(In)

41°

Hyper-Kamiokande

Intermediate Detector

HYPER-K NEUTRINO BEAM

 ν_{μ} or $\bar{\nu}_{\mu}$ beam selected by magnetic horn polarity 2.5° off-axis beam with energy peaked at 0.6 GeV Peak aligned with oscillation maximum Quasi-elastic (QE) interactions dominate Staged J-PARC upgrade to 1.3 MW

HYPER-K NEAR DETECTORS

On-axis INGRID detector monitors neutrino beam profile and event rate

Hyper-Kamiokande 10

Fine grained detectors

Off-axis detectors ND280 detect neutrinos at 2.5° off-axis angle before oscillation occurs Constrain unoscillated neutrino fluxes \otimes interaction cross section

Magnetic field to distinguish +/- charge

ND280 upgrade to improve angular acceptance and neutron measurement capabilities

HYPER-K FAR DETECTOR

Hyper-Kamiokande 11

Hyper-Kamiokande detector Planned operation in 2027 258 kiloton

144 11

68 m

and some works . where

2015

E

HYPER-K FAR DETECTOR

▶ 20,000 20" PMTs with 2× the quantum efficiency of Super-K PMTs, better charge and timing resolution

Hyper-Kamiokande 12

Hyper-Kamiokande detector Planned operation in 2027 258 kiloton

*********************************** ************************* 68 m 1 to the North and the second second

B

Atmospheric neutrino

Cosmic ray

HYPER-K DETECTOR

Supernova neutrino Solar neutrino

- Hyper-K has a rich physics program beyond long-baseline neutrinos
 - Detecting neutrinos from the Sun, supernovae and the atmosphere
 - Proton decay, dark matter search

Hyper-Kamiokande 13

Hyper-Kamiokande detector Planned operation in 2027 258 kiloton

per Kamiokande

Proton decay

INTERMEDIATE WATER CHERENKOV DETECTOR (IWCD)

mPMT

BEAM

Bean direction

- Multi-PMT (mPMT) modules to increase granularity
- Movable detector to measure neutrinos with different energy spectra
 - Constrain the "feed-down" effect from higher energy non-QE events
- Constrain dominant systematic uncertainty in CP measurement $\nu_e/\bar{\nu}_e$ cross section ratio to better than 4%

HYPER-K SENSITIVITY - δ_{CP}

- Hyper-K will collected thousands of v_e and v
 e events over 10 years
- After 10 years of operation, 61% of true δ_{CP} values can be excluded at 5 sigma
 - If $\delta_{CP} = -\pi/2$, 5σ exclusion after 2-3 years of data taking!

Hyper-Kamiokande

HYPER-K SENSITIVITY - δ_{CP}

- Hyper-K will collected thousands of ν_e and $\bar{\nu}_e$ events over 10 years
- After 10 years of operation, 61% of true δ_{CP} values can be excluded at 5 sigma
 - If $\delta_{CP} = -\pi/2$, 5σ exclusion after 2-3 years of data taking!
- Reducing systematic uncertainties is crucial for the physics goals
 - Much of our group's work at TRIUMF has been aimed at reducing detector and cross section uncertainties

Hyper-Kamiokande

10 years running, 1:3 ν : $\bar{\nu}$ run plan

WATER CHERENKOV TEST EXPERIMENT (WCTE)

- IWCD prototype to be commissioned in spring 2024
 - Test of mPMT and calibration techniques
 - T9 test beam @ CERN
 - > 0.3 1.1 GeV π , p, e, μ and tagged γ beam

Lots of interesting results to come with WCTE

- E.g. test of water Cherenkov event reconstruction using particles of known momentum and vertex
- Understanding neutrino cross section on water through e/µ scattering

WATER CHERENKOV TEST EXPERIMENT (WCTE)

Lead Glass

- Beam test at CERN in July 2023
- Demonstrated capability of tagging charged particles of varying momenta and types
- Tagged γ beam also successful

MULTI-PMT DEVELOPMENT

▶ 19 3" PMTs in each mPMT module

- TRIUMF will build ~40 mPMTs for WCTE/IWCD using both exsitu and in-situ gelling method
 - Mass production to begin in late August

Ex-situ gelling

Measured mPMT response

- Detailed mPMT response measured using dedicated test stand
- Longterm immersion test has been performed to monitor inside humidity and pressure change

MULTI-PMT DEVELOPMENT

Will use the experience of WCTE mass production to make the final decision about the mPMT assembly strategy

Choice between in-situ vs ex-situ gelling strategy for IWCD will be made after WCTE mPMT production

Ex-situ gelling

In-situ gelling

LED CALIBRATION SOURCES IN MPMT

WCTE/IWCD mPMT calibration LED

Sub-nsec LED pulser measured timing

WaterMonitorBoard-3, 1-470nm, external, 10.00V, final-w-spec [New data format] Nph 3.3e+07 +/- 3.1e+07, Rise time 0.79 ns

- - From 290 nm to 470 nm
- calibration
- - ▶ 20 wide-angle LEDs for PMT angular response calibration

Calibration light sources will utilize the sub-nsec, low-cost LED driver designed @ UVic

Each WCTE / IWCD mPMT will contain 3 fast LEDs for timing and detector optical

Each Hyper-K mPMT will contain 40 LEDs

> 20 narrow-angle LEDs for water parameter calibration including Raman scattering

WATER MONITORING SYSTEM

Hyper-Kamiokande 22

- Light propagation in water needs to be precisely calibrated and monitored in water Cherenkov detectors
- Pulsed LED (230 700 nm) with <1 ns width</p>
- Applications in drinking water monitoring
 - Continuous measurement with high sensitivity
- First prototype has been built @ TRIUMF; alignment and operation studies are ongoing

HYPER-K TIMELINE

May 2021, Groundbreaking

Total of 3,772 PMTs (~20%) delivered by April 2022

HYPER-K TIMELINE

Good progress in cavern excavation and accelerator upgrade

Excavation of the Main Cavern: Dome Section

Dome excavation is progressing well and has already exceeded the SK diameter.

Prepar

ation

(current status)

As of May 30, 2023

Accelerator upgrade to 1.3 MW ongoing

SUMMARY AND OUTLOOK

- Hyper-Kamiokande will provide an definitive answer to some of the remaining questions about neutrinos
 - Scheduled to come online in 2027
 - Discovery of CP-violation in the lepton sector for 60% of the possible phase space
 - TRIUMF contributes to many critical components of Hyper-K
 - Leading role in WCTE and IWCD
 - multi-PMT development and production
 - Novel detector calibration systems

SENSITIVITY TO CP-VIOLATION AND MASS ORDERING

CP-violation in the lepton sector if $\delta_{CP} \neq 0, \pm \pi$ > $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ > δ_{CP} can be probed by the comparison of $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx 4c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin^{2} \Delta_{31} \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2s_{13}^{2} \right) \right)$$
$$+ 8c_{13}^{2} s_{12} s_{13} s_{23} \left(c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23} \right) \cos \Delta_{32} \sin \Delta_{32} \sin \Delta_{32} \sin \Delta_{32} \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$$
$$- 8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$$

 $\Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E_{\nu}}$

Leading term (including matter effect)

 $_{31}\sin\Delta_{21}$

CP-conserving

CP-violating

HYPER-K Δm_{32}^2 and θ_{23} sensitivity

• Wrong octant can be excluded at 3σ , for true $\sin^2 \theta_{23} < 0.47$ and $\sin^2 \theta_{23} > 0.55$

• 1 σ resolution of Δm_{32}^2 as a function of true $\sin^2 \theta_{23}$

HYPER-K PHYSICS GOALS

- Atmospheric neutrinos improve sensitivity to mass ordering
- >4 σ discovery potential for diffuse supernova neutrinos
- Supernova burst detectable up to 1 Mpc; 50k ~ 80k events from a SN at 10 kpc
 - Measure SN neutrino time profile and energy spectrum \rightarrow SN modeling
- Resolve solar neutrino and KamLAND tension to $>4\sigma$
- Further improve proton decay limits

HK atmospheric + beam sensitivity to mass ordering

Hyper-Kamiokande 29

PHOTOGRAMMETRY GEOMETRY CALIBRATION

SK photogrammetry survey

- Use photogrammetry to measure the position of PMTs and calibration sources in-situ
 - The first survey was done in SK using underwater ROV
 - ▶ WCTE will utilize fixed cameras; IWCD and Hyper-K will utilize both ROV and fix cameras
 - Reduce fiducial volume error

MACHINE LEARNING EVENT RECONSTRUCTION

Machine learning techniques have been applied to event reconstruction in IWCD and Hyper-K

Encouraging improvements from traditional method Improve supernova direction finding

SN direction in Super-K

e/γ separation in IWCD

Improve Neutron Identification in Water 2022 (<u>https://doi.org/</u>

HYPER-K COLLABORATION

~560 collaborators from 21 countries and 101 institutes 25% Japanese / 75% non-Japanese

Two Host institutes: University of Tokyo and KEK

Hyper-Kamiokande has become a CERN Recognized Experiment: RE45

Hyper-Kamiokande 32

NUMBER OF **COLLABORATORS**

-Total -Japan -Oversea

