

ARIEL Status

Multiplying TRIUMF's Radioisotope Science

Alexander Gottberg ARIEL Program Leader Department Head, Targets and Ion Sources

TRIUMF Science Week August 03, 2023

Why Radioisotope Beams?

How are the elements made that make up our world?

Discovery, accelerated

∂ TRIUMF

TRIUMF Isotope Production Simulation in Neutron Star Merger

t : 0.00e+00 s / T : 10.96 GK / ρ_b : 8.71e+12 g/cm³

In order to study isotopes with half lives < hours, production, delivery and experiment must occur simultaneously

→ Online Radioisotope Beam Facilities

Pb (Z=82)

Other applications: nuclear medicine, solid state physics, fundamental symmetries, nuclear applications...

See:

- Greg Hackman: Early Science at ARIEL, 9:15
- Ragnar Stroberg: Science opportunities with ARIEL from the theory perspective, 10:30

Mass number, A

- Paul Garrett: Nuclear Physics, 11:55
- Annika Lennarz: The BeEST, 13:00
- Andrew McFarlane: beta-NMR, 13:20
- Alan Jamison: FrAg for Fundamental Physics, 14:0

O. Korobkin, S. Rosswog, A. Arcones, C. Winteler, arXiv:1206.2379

 10^{-5}

 10^{-15}

 10^{-20}

% TRIUMF

Radioisotope Beam Facilities World-Wide

With ISAC and ARIEL, TRIUMF hosts the highest-power ISOL facilities in the world.

Isotope Separation Online for RIB Production

ISAC – The Highest-Power ISOL Facility

9

ISAC – The Highest Power ISOL Facility in the World

Tripling TRIUMF 's Radioisotope Science Program

Advanced Radioisotope Laboratory (ARIEL)

- ARIEL-I (2012 2014)
 e-linac, beam tunnel, target building
- ARIEL-II (2017 2027) target stations, shielding, hot cells, RIB distribution
- CANREB (2014 2019) charge state breeding and purification for postacceleration in ISAC II
- Therapeutic Isotopes (2020 2028) production and processing of medical isotopes at ARIEL proton target station

\$200 million investment by federal and provincial governments; supported by 21 universities across Canada, about 700 FTE years total effort

over) lerate

An Independent Driver for TRIUMF's Rare Isotope Program

in-target production intensity from UC_x

500 MeV x 10 μA protons [1/s]

30 MeV x 10 mA electrons [1/s]

∂ TRIUMF

13

ARIEL Electron Superconducting Linac

- Construction completed (ARIEL-I)
- Nominal beam (30 MeV, 10 kW) demonstrated
- Focus on reliability and beam power ramp-up

ARIEL Scope

ARIEL Ultimate Objectives:

- Two new radioisotope production target stations 50 kW protons and 100 kW electrons
- Multi-user operation

up to three simultaneous isotope beams (9000 RIB hours) delivered to the existing experimental facilities

More efficient post acceleration

electron beam ion source - charge state breeder, radiofrequency quadrupole, Nier-spectrometer and unique 1/20,000 resolution high-resolution mass separator.

Medical Isotopes

production and processing in proton target station beam dump

15

Driver Accelerators for ARIEL

- e-linac towards high reliability and 100 kW beam power
 - 10 kW, 30 MeV beam demonstrated
 - R&D on particulate contamination, Plasma cleaning
 - Develop software tools to support beam ramp-up and high-power operation
 - Support science (DarkLight, FLASH, etc.)
- Primary proton beam line BL4N
 - Extraction probe installed.
 - All vault section beamline section installed.
 - Proton beam with nominal energy (480 MeV) successfully extracted.

E-LINAC	
BEAM	ON
PATH	EHD : DUMP
PEAK CUR.	498 μΑ
ENERGY	30.2 MeV
POWER	10.0 kW

ARIEL Status: Target Station

- AETE (ARIEL Target Station East) targetry protype testing complete, technical risks retired.
- VECC collaboration: AETE Target/Ion Source Front End Prototype shipped
- Target Module front end & High Voltage Feedthrough (HVFT): Design & drawings nearing completion and parts being completed by machine shop and HVFT ordered.

HVFT

Target Module

Target Ion Source Front End

Alexander Gottberg – ARIEL Overview

elei

Ó

ARIEL Status: Target Hall Infrastructure

- Shielding construction ongoing and on time.
- Structural Supports for heavy ARIEL modules received and installation completed.

ARIEL Status: Hot Cell

- Largest single capital investment for the project.
- Hot cell installation completed!
- Prototyping ad training ongoing.

•

ARIEL Status: RIB (Transport) Modules

- RIB transport system outside the target hall (200 m of electrostatic beamline)
 >95% installed and commissioned
- RIB module vacuum chambers fabricated for VECC
- First RIB module vacuum dog-leg fabricated and assembled.
- RIB module steel shielding fabrication in progress!

TRIUMF ARIEL Status: Medical Radioisotopes System Design Progressing

At 500 MeV (ISAC/ARIEL): ≤100 MeV stopped in target

Hundreds of co-produced isotopes including; ²²⁵Ra, ²²⁵Ac, ²²⁴Ra, ²²³Ra, ²¹³Bi, ²¹²Pb, ²¹²Bi

ac

ARIEL Project Completion

With approval of additional resources, TRIUMF has recently reaffirmed its commitment to complete the ARIEL CFI project within the next 5YP.

ARIEL CFI objectives:

- ARIEL equipment maintenance Hot Cell (completed)
- CANREB beam line installation completed (completed)
- High mass Rare Isotope Beam from ISAC to ARIEL to ISAC (completed)
- ARIEL Electron Target East (AETE) design (completed)
- RIB from AETE at ~1 kW electron beam (2026)
- RIB from APTW at > 10 kW proton beam (2027)
- Therapeutic Isotopes (2028)

2023-08-03

% TRIUMF

ARIEL Ramp Up

Required for the ramp up of operation to take full advantage of ARIEL over the next 5YP:

- Target production laboratories
- Dedicated target waste handling cell
- Target decay storage vault
- Offline target acceptance stand
- Resonant laser ion source for proton target station
- APTW proton beam raster system
- AETE power ramp-up from $\sim 1 \text{ kW to } > 10 \text{ kW}$

Design goal of >10 kW electron beam power, 9000 hours beam time, 3 simultaneous RIBs. Only possible within the funding request of \$450 M.

Beams from ARIEL

Release in ISOL Targets

RIBs Availability from all ISAC Targets Over the Years

∂ TRIUMF

Discovery, accelerate

Origin of the Areas of Poor Isotope Release

Experimental LE Isotope Rates at ISAC since 2000 [1/s]

ISAC Isotope Extraction Efficiency

Average experimental ISAC LE isotope rates from UC_x [1/s]

FLUKA ISAC in-target isotope production rates from UC_x [1/s]

29

ISAC Isotope Extraction Efficiency

Average isotope extraction efficiencies from ISAC UC_x

Electron-Driven ISOL Challenges

→ ISAC isotope extraction efficiencies not directly applicable to ARIEL AETE, but best assumption available...

Ö

31

ac

Projecting ARIEL AETE Yields

FLUKA AETE in-target isotope production rates from UC_x [1/s]

celerat S C O S ac

32

Projecting ARIEL AETE Yields

ARIEL AETE and APTW Projected Yields

Initial ARIEL AETE yields projected using measured ISAC-UC_x isotope extraction efficiencies

Differences in geometry and material microstructure will require confirmation and additional R&D

Projected LE Isotope Rates from AETE [1/s]

Initial ARIEL APTW yields will be comparable to current average ISAC yields

And: capabilities for new target materials, target ion source concepts, molecular beam formation, etc

Projected LE Isotope Rates from APTW [1/s]

2023-08-03

Alexander Gottberg – ARIEL Overview

Recent accomplishments already nurture many science and international collaboration opportunities.

Hub for Training and R&D

ARIEL is a platform for student projects across all disciplines (engineering, engineering, math, physics, graphics design, chemistry) and all levels (high school students, 30+ coop students, 8+ master students, 10+ PhD students, post-docs)

Example: The joint University of Victoria /TRIUMF accelerator research program

- 2 joint faculty positions,
- NSERC grant for student support in accelerator physics since 2011
 - 6 PhD, 4 MSc (6 international) •
 - So far 1 PhD and 4 MSc theses finished
- One lecture taught by the adjunct faculty each year
- Research topics: •
 - Beam physics and instrumentation (R. Baartman, T. Planche, O. Kester)
 - Superconducting RF (R. Laxdal, T. Junginger)
 - Ion Sources and Targets (A. Gottberg, T. Day Goodacre, O. Kester) •

\rightarrow See Tobias Junginger: Accelerator Physics and ARIEL, 10:55 am

Material Radiation

Damage

 \rightarrow See Greg Hackman: **∂** TRIUMF Early Science at ARIEL, 9:15

X-Ray FLASH Radiotherapy Research

Cancer radiotherapy with greatly reduced side effects

Early Science at the ARIEL e-linac

Selected ARIEL Technology International Collaborations

Canadian Nuclear Laboratories Material radiation damage studies

> SCK CEN (Belgium) RIB targetry, remote handling

CERN-ISOLDE (Switzerland): ISOL Systems, material damage RAON (South Korea): Targetry and Colinear Spectroscopy

KEK (Japan):

Remote handling

Fermilab (US) Remote handling and material radiation damage studies PSI / (Switzerland): ISOL systems

INFN-SPES (Italy): ISOL Systems

Variable Energy Cyclotron Centre (India): SRF, targetry, RIB distribution,

> Discovery, accelerated

 \rightarrow See Arup Bandyopadhyay: TRIUMF/VECC collaboration towards ARIEL/ANURIB, 11:15 am

38

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

