% TRIUMF

Recent results from the mass spectrometer EMMA at TRIUMF

Louis Wagner

Postdoc for DRAGON and EMMA at TRIUMF

2023 TRIUMF Science Week Jul. 31st, 2023 Vancouver, B.C. Canada

1

2023-08-01

TRIUMF ISAC Facility

- The Isotope Separator and Accelerator (ISAC) facility at TRIUMF provides a wide variety of intense beams of exotic nuclei produced using the ISOL method
- Beams reaccelerated through 35 MHz RFQ with A/q<30
- 105 MHz variable energy DTL $(3 \le A/q \le 6)$
- Energies between 0.15 MeV/u & 1.8 MeV/u
- Low-energy regime well suited for reaction studies for novae & X-ray bursts
- ISAC-II SC-LINAC max. beam energies 6.5 16.5
 MeV/u suited for transfer reactions on heavy ions

Recoil Mass Spectrometer EMMA

The Electro-Magnetic Mass Analyzer (EMMA)

[1] B. Davids, M. Williams, et al., NIMA 930, 191-195 (2019).

Beam suppression in EMMA

Need to use EMMA's slit systems to improve beam suppression.

- Suppression factor of slits alone was measured $\sim 5 \times 10^4$ with no cuts on the data
- Together with gate on Time-of-Flight total suppression up to ~10¹⁰ can be achieved

TIGRESS y-detection array

- 12 Clover detectors with 8 centered at 90° and 4 at 135°
- segmented outer contacts for improved Doppler correction for spectroscopy after inbeam reactions
- 4 crystals in a common cryostat
- BGO Compton suppressor shields, reconfigurable in situ

Studying the weak r-process with EMMA+TIGRESS

 (α, n) reactions on isotopes of Kr, Rb and Sr are identified as particularly important for determining weak r-process abundance signatures.

Currently there is a lack of (α, n) cross-section data in this mass region, so all predictions rely on statistical model calculations, which carry large uncertainties (> x10).

How to make a target from an inert gas?

- Typical options include gas targets and implanted foils ٠
- Advances in materials science provides new options: Magnetron-sputtered silicon thin-films formed in a helium plasma environment.

[1] J. Bliss *et al.,* Phys. Rev. C **101**, 055807 (2020). [2] V. Godinho et al., ACS Omega 1,1229–1238 (2016)

Slide from Matthew Williams

expensive infrastructure.

Au

Measurement of ⁸⁶Kr(α,n)⁸⁹Sr

Two measurements were performed of ⁸⁶Kr(α ,n)⁸⁹Sr at 265 and 240 MeV bombarding energies

In both measurements a gold degrader foil was used, since the recoils would otherwise be too energetic to bend.

November 2021: Si:He targets were self-supported with a 2µm Gold degrader mounted ~10 cm downstream.

- Pro: little influence of degrader on γ-ray background (coulex).
- Con: recoil angles entering EMMA not constrained to region where EMMA's acceptances are known ($\pm 3^{\circ}$)

August 2022: Si:He targets were deposited directly onto a $4\mu m$ gold degrader foil.

- Pro: can use 3° aperture to define maximum recoil angle entering EMMA.
- Con: Introduces γ-ray background from coulex (not an issue for this particular experiment) also potential for Doppler broadening of some lines of interest (not vet confirmed).

Beam normalisation & target content measured via 2 SSB detectors

Transmission through EMMA was measured for different energy tunes and charge states to find optimum settings. Compare attenuated beam rate on scintillator vs focal plane.

Stable beam test measurement: ⁸⁶Kr(α,n)⁸⁹Sr

TIGRESS-EMMA Coincidences

EMMA was tuned to A=89 (q=19+) 89.7 MeV recoils

- See clear peak in the timing signal between EMMA and TIGRESS events.
- The timing peak is also correlated with a well-focused A=89 (q=19+) peak seen in the focal plane X-position (dispersive direction).
- Able to pick-out clear ⁸⁹Sr γ-rays in coincidence with EMMA events gated on the PGAC spectrum. Can now use these γ-ray yields to constrain statistical model calculations.

Measurements were successful with stable beam & targets clearly performed well!

Measurement of 83 Rb(p, γ) 84 Sr

2000

1000

-10000

-8000

-6000

-4000

-2000

TIGRESS-EMMA Time (ns)

2000

- Large background from ⁸³Sr contamination in the beam, which scatters onto EMMA's entrance aperture \rightarrow obscures the timing peak!
- Plotting γ -ray energy vs the correlation time reveals signal of high energy y-rays at the expected correlation time.
- Gating around the correlation peak reveals the transition from the first 2⁺ to ground state transition in ⁸⁴Sr. (16 events above background)

First measurement of a p-process reaction with a radioactive beam

Partial cross-section is converted to the full reaction cross section using γ -cascade models (included in the SMARAGD code), which predict 71 ± 10% of (p, γ) reactions result in a 2⁺ \rightarrow 0⁺(g.s.) decay.

Total cross sections are approximately 4x smaller than predicted by Hauser-Feshbach models

G. Lotay, S. Gillespie, M. Williams, et al., Phys. Rev. Lett. 127, 112701 (2021).

M. Williams, et al., Phys. Rev. C 107, 035803 (2023).

Statistical modeling by T. Rauscher

Astrophysical impact of 83 Rb (p, γ) 84 Sr measurement Investigated for both Type II and Type Ia supernovae explosions

- Lower ⁸³Rb (p, γ) ⁸⁴Sr cross-section leads to less efficient destruction of the ⁸⁴Sr p-nucleus in supernovae, raising its production factor.
- The total uncertainty in ⁸⁴Sr production is reduced by a factor of 2 from previous sensitivity study.
- Uncertainties represent the combined effect of all reaction rates variations not just 83 Rb (p, γ) 84 Sr.
- Abundance enhancement not sufficient to explain enhanced ⁸⁴Sr seen in Allende Meteorite but could relieve tension – full GCE simulations required!

$$15 M_{\odot} \text{ CCSNe} = +30 \%$$

 $25 M_{\odot} \text{ CCSNe} = +12 \%$
Type 1a SNe = +32 %

Astrophysical modeling by N. Nishimura

M. Williams, et al., Phys. Rev. C 107, 035803 (2023).

New target chamber SHARC-II for EMMA & TIGRESS

Front View

- Upgrade of SHARC target chamber to connect it to EMMA
- Designed by C. Diget et al., J. Instrum. 6, P02005 (2011)
- 6 DSSSD detectors to cover angular range of:
 - $10^{\circ} 28^{\circ} \sim 100^{\circ} 140^{\circ} \ 146^{\circ} 172^{\circ}$

Test of new target chamber SHARC-II with EMMA & TIGRESS

Tigress Addback energy doppler corrected with Emma Si hit and Tigress-Emma time gate

^b) From present experiment. The uncertainty in absolute magnitude of the G_{IJ} is about 30 %. ^c) Obtained by re-analyzing the data of ref. ¹) with DWBA using the τ -potential of ref. ¹⁵), and the

d-potential set 1 of ref. ¹¹). No NL corrections were applied, and N = 4.4 was used.

Louis Wagner

500

0

500

1500

1000

2000

2500

3000

3500

SUMMARY / OUTLOOK

- Transfer reactions critical for many astrophysical processes/sites but very challenging to measure
- Recoil mass spectrometer very specific device to solve issue (primarily for RIB)
- Techniques well developed for all conditions: low cross section, beam contaminants
- Recoil Separation needed to making *pioneering* measurements, i.e. first direct measurements of p-process reaction with radioactive beam
- Can contribute to precision measurements of stable reactions as well, complementary to normal kinematics
- Upcoming EMMA experiment in August: ⁸⁶Kr(α,n)⁸⁹Sr and ⁹⁴Sr(α,n)⁹⁷Zr (Part III) for weak r-process
- SHARC-II chamber allows transfer reaction measurement with full information on reaction products (light particle, gamma & recoil)
- Decay station for studying recoil decay will be assembled over the next year

∂TRIUMF

My thanks to Barry Davids (TRIUMF) & Matthew Williams (Uni of Surry) for slides and to all my collaborators at EMMA & TIGRESS!

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

17

Φ

Inverse Kinematics

- **Maximum** possible **recoil angle** when E_{γ} is maximized for $E_{\gamma} = Q + E_{c.m.}$
- AND emission perpendicular to beam axis ($\theta_{\gamma} = \pi/2$)

Recoil Separator Goes Here!

 θ'_3

The Challenge

- In inverse kinematics we have:
- Beam that did not interact
- Recoil with, in average, the same momentum as the beam
- Recoil with an momentum/energy distribution
- Recoil with an angular opening that is larger than that of the beam
- Beam and recoil with various charge states

Difficult to detect the recoils right after the target

Recoil separators are devices which separate nuclear reaction products (recoils) leaving a target from the unreacted beam particles.

Inverse Kinematics

- Necessity due to not being able to make short-lived radioactive targets
- Detect recoiling product nucleus: forward focused, 100% efficiency
- Becomes problem of separating rare reaction products from abundant beam
 - >zero-degree electromagnetic separator
- Additional advantages:
 - Target either H₂ or He: usually gaseous → windowless (jet,extended), purified etc...
 - Still detect gamma rays (tag)
 - Particle ID on reaction products

Two-Body Kinematics Calculator and Plotter

http://skisickness.com/2020/02/kinematics/

Angular distribution of recoils

Figure 1 Distribution of recoils in the θ_x , θ_y space for ${}^{12}C(\alpha,\gamma){}^{16}O$ ground state transition at E = 1.0 MeV. For different γ -ray angular distributions. Left: isotropic. Center: $\sin^2 \theta$. Right: $\sin^2 \theta \cos^2 \theta$. For reference, a circle shows an angular acceptance of 24 mrad. See text for details.

For absolute cross section, full transmission of the selected charge state is needed

Example from FMA to study ${}^{13}C(p,\gamma){}^{14}N$ and ${}^{18}O(p,\gamma){}^{19}F$ and ${}^{18}F(p,\gamma){}^{19}Ne$ but limited in transmission