



# MR-TOF-MS for yield and mass measurements during the p2n target commissioning

#### Ali Mollaebrahimi

Justus-Liebig-Universität Gießen, Germany TRIUMF accelerator Centre, Canada

2023, July



### Mass and binding energy

Mass is one of the most fundamental properties of particles which reflects the **binding energy** of a bound system and can reveal information about its properties.



#### The mass of a neutral atom:

$$M = [(Z \times m_p) + (N \times m_n) - B_{nucleus} + (Z \times m_e) - B_{atom}]/c^2$$

Z: number of protons/electrons N: number of neutrons  $m_p$  and  $m_n$ : mass of free protons and neutrons  $m_e$ : mass of free electron  $B_{nucleus}$ : binding energy of nucleons  $B_{atom}$ : binding energy of electrons c: speed of light

#### Mass



# **Mass Measurement in Nuclear Physics**

| Nuclear<br>Structure                                                                                                                                                                       | Nuclear<br>Astrophysics                                                                                                                             | Fundamental symmetries<br>and interactions                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Evolution of shell<br/>closure and sub-<br/>shell</li> <li>Nuclear<br/>deformation</li> <li>p/n driplines</li> <li>Decay properties</li> <li>Halo nuclei</li> <li>Etc.</li> </ul> | <ul> <li>Nuclear Synthesis<br/>models:<br/>r-process<br/>s-process<br/>rp-process</li> <li>Abundance of<br/>heavy elements</li> <li>Etc.</li> </ul> | <ul> <li>Physics beyond<br/>Standard Model</li> <li>CKM matrix<br/>elements</li> <li>Neutrino Physics</li> <li>Double beta decay</li> <li>Interactions</li> <li>Etc.</li> </ul> |
| δm/m ≈ 10 <sup>-6</sup> - 10 <sup>-7</sup><br>MR-TOF-MS<br>Storage Ring                                                                                                                    | δm/m ≈ 10 <sup>-7</sup><br>MR-TOF-MS<br>Storage Ring                                                                                                | δm/m ≈ 10 <sup>-9</sup><br>Penning Trap                                                                                                                                         |
|                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                 |

#### **Nuclear Structure and Astrophysics**

- Studying nuclear structure and astrophysics within the r-process path
- At the limit of facilities or beyond
- Need for continues developments and upgrades



# **RIB beam at TRIUMF**



# **TITAN and Yield Station at ISAC/TRIUMF**



#### Yield measurements at ISAC I







# **TITAN ion traps**



# Low-energy beam transport to MR-TOF-MS





- Gas filled RFQs:
  - Beam re-capture and cooling (10<sup>-2</sup> mbar)
- RFQ Switchyard:
  - Merging of calibrations ions
  - Redirection of cleaned ions
- RFQ Trap:
  - Prepare ion bunch

C. Jesch et al., Hyperfine Interact. 235 (2015) 97 M. Yavor et al., Int. J. Mass Spec. 381 (2015) 1-9 T. Dickel et al., J. ASMS 28 (2017) 1079

#### **Multiple-Reflection Time of Flight Mass Spectrometer**



Measurement of mass-tocharge ratio by measurement of time-of-flight:

$$E = \frac{1}{2}mv^2 = qeU$$
$$\Rightarrow \frac{m}{q} \propto TOF^2$$

- **Yield Measurements** >
- Isobaric separator and beam  $\succ$ purification for itself and other traps

C. Jesch et al., Hyperfine Interact. 235 (2015) 97 M. Yavor et al., Int. J. Mass Spec. 381 (2015) 1-9 T. Dickel et al., J. ASMS 28 (2017) 1079

#### **Multiple-Reflection Time-of-Flight Mass Spectrometer**



# **MR-TOF-MS complementary** to the yield station

- Non-scanning and Broadband (RIB beam profile)
- Fast measurement cycles (~10s ms)
- Background handling ~1:  $10^8$
- 3-4 orders of magnitude more sensitive than yields station
- Monitoring stable species as well as RIB isotopes (resolved peaks) and radioactive molecules
- Yields determination without relying on decay scheme for radioactivity
- Optimize RIB delivery through magnet separator for species-of-interest or its ratio to contamination (isobar sensitivity, low-intensity species)
- Live laser tuning and monitoring only the isotope of interest (not channeltron/FC)

# **MR-TOF-MS**



# Complements the present capabilities at ISAC for yields determination and beam delivery Yield station is well suited for high-intensity species through their radioactivity

#### P2n target commissioning



#### Win-win game (Yield and mass measurements)



#### First mass measurement of neutron-rich Sn isotopes



#### **Neutron-rich Sn isotopes**

- TRILIS Laser ions source (ionization of Sn isotopes)
- Laser Block/unblock for identification
- Cs and Ba as mass calibrants (surface ionization)



![](_page_15_Figure_5.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

ab-initio calculations in house: Jason Holt, Takayuki Miyagi

#### **Nuclear Astrophysics (r-process)**

# Path-line and abundance Calculations:

- N capture cross sections
- Decay modes
- Half-lives
- Branching ratios
- Binding energies

![](_page_20_Figure_7.jpeg)

Gabriel Mrtinez and Andre Sieverding

- Y(Z, N): Abundance G(Z, N): Partition function  $N_n$ : Neutron density kT: Temperature (MeV)
  - $S_n$ : Neutron separation energy

Ali Mollaebrahimi TRIUMF Science Week 2023-07-31

#### 21

Saha equation:

$$\frac{Y(Z,N+1)}{Y(Z,N)} \propto \frac{G(Z,N+1)}{2G(Z,N)} \frac{N_n}{(kT)^{3/2}} \exp\left[\frac{S_n(Z,N+1)}{kT}\right]$$

M.R. Mumpower et. al, Phys. Rev. C 92 (2015)

#### **Summary and Outlook**

- TITAN's MRTOF-MS with a complementary role at ISAC I
- MR-TOF-MS contribution to p2n target commissioning
- Win-win game (yields and masses)
- Sn isotopic chain got extended including three new mass measurements
- Nuclear structure (neutron pairing gap)
- Impact on "Nuclear Astrophysics" in calculations (r-process)

![](_page_21_Figure_7.jpeg)

**MR-TOF** 

ooled SC

RFQ cooler-buncher

isobari purifie beam

#### **MR-TOF Students**

![](_page_22_Picture_1.jpeg)

# 

2023

2018 - 2019

# Thanks!

#### On behalf of TITAN's Collaboration

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_22_Picture_8.jpeg)

# **ISOL** beams at **TRIUMF**

- Beam composition after the dipole separator (R=2500)
- ≻ A/q=65
- UCx target
- TRILIS ion source

Singly charged ions Doubly charged ions Molecular ions

![](_page_23_Figure_6.jpeg)

#### Need for a more powerful separation method

# Mass selective re-trapping

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

Use the MR-TOF-MS as its own beam purifier

Combined isobar separation and mass measurements

T. Dickel et. al, JASMS, (2017) 28:1079-1090

# Mass selective re-trapping

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

Use the MR-TOF-MS as its own beam purifier

- Combined isobar separation and mass measurements
- Provide isobarically-purified beam for downstream experiments (e.g., for Penning trap)

Boost in dynamic range Selection of High-lying isomer/ isobars Improve precision in mass measurement mode

T. Dickel et. al, JASMS, (2017) 28:1079-1090