Feasibility of Future Colliders

Thomas Roser TRIUMF Science Week July 31, 2023

AF Collider Implementation Task Force

- The Collider Implementation Task Force (ITF) was charged with the evaluation and **fair and impartial comparison** of future collider proposals, including R&D needs, schedule, cost (using the same accounting rules), and environmental impact.
- Comparison was done for colliders with similar physics goals such as Higgs factories and high parton CM energy colliders.
- ITF effort built on the 2021 report "European Strategy for Particle Physics -- Accelerator R&D Roadmap"
- The full report is available at <u>arXiv:2208.06030v2</u>. It is also accepted for publication in JINST.

Reinhard Brinkmann (DESY)

Sarah Cousineau Dmitri Denisov (ORNL) (BNL)

Spencer dessne (SLAC)

Steve Gourlay

Philippe Lebru (CERN)

Jim Strait

(FNAL)

Meenakshi Narain (Brown U., deceased) Katsunobu Oide (KEK)

Tor Raubenheimer (SLAC)

Thomas Roser (BNL, Chair)

John Seeman (SLAC)

Vladimir Shiltsev (FNAL)

Marlene Turner (LBNL)

LianTao Wang (U. Chicago)

(LBNL)

Approach of evaluation

- To facilitate an evaluation that is most useful to Snowmass and P5 24 future collider proposals were grouped into 5 categories:
- Higgs factory colliders with a typical CM energy of 250 GeV
- High energy lepton colliders with up to 3 TeV CM energy
- Lepton and hadron colliders with 10 15 TeV parton CM energy
- Lepton-hadron colliders
- Collider versions that could be located at FNAL
- ITF evaluated one version of each concept, as selected by the proponents, for:
- Physics reach and impact (CM energy and luminosity reach)
- Technical risk, technical readiness, and validation
- Cost and schedule
- Size, complexity, power consumption, and environmental impact
- ITF did NOT review the ultimate performance of the proposed facilities but focused on technical risk and R&D requirements, estimated cost and plausible, technically limited schedule.
- We did not consider or include staging possibilities of different collider proposals such as FCC-ee followed by FCC-hh. Each proposal was considered on its own. The only exceptions are the leptonhadron colliders.

Future collider proposals: 0.125 – 500 TeV; e+e-, hh, eh, $\mu\mu$, $\gamma\gamma$, ...

4

Four areas of evaluation listed in summary tables

Years of per-project R&D needed (technical risk and maturity)

- Provides relevant and comparable measure of maturity and estimate how much R&D is still needed before project start. It includes feasibility R&D, R&D to get technologies to TRL of 5 or higher, and R&D for cost and power consumption reduction.
- To estimate the time needed for all pre-project R&D we assumed similar progress (and funding) as in the past performance and cost reduction R&D. Focused R&D on energy efficiency of future colliders would be mostly a new effort.
- For proposals with ongoing pre-project R&D it is the time to complete it. For the other proposals it is the period between the time of the decision to start investing into pre-project R&D and the start of the project.

Years until first physics (technically limited schedule)

This is most useful to compare the scientific relevance of the proposals. It includes pre-project R&D, design, project R&D, construction, and initial commissioning.

Four areas of evaluation listed in summary tables (cont'd)

Project cost in 2021B\$ w/o contingency and escalation (cost)

- All colliders, except the lepton-hadron colliders, were assumed to be stand-alone projects, since ITF could not assume or decide on a sequence of projects.
- ITF used its own cost model to estimate the cost. It uses known costs of existing installations and reasonably expected cost of novel equipment. For future technologies, the cost estimate is quite conservative, and one should expect cost reductions from pre-project cost-reduction R&D.

• Total operating electric power consumption in MW (environmental impact)

- This includes all necessary utilities. We used information from proponents, if provided, otherwise we made a rough estimate. One can expect reductions from pre-project R&D to improve energy efficiency and develop more energy efficient concepts, such as energy recovery technologies.
- A high luminosity could allow for reducing the operating years of the facility and reduce the total energy consumption. In reality, however, such a large science facility will likely operate for at least 20 years, independent of peak luminosity. Therefore, we believe the operating power consumption is a better way to compare facilities.

Higgs factory summary table

Main parameters of the submitted Higgs factory proposals.

- The cost range is for the single listed energy.
- The superscripts next to the name of the proposal in the first column indicate:
- (1) Facility is optimized for 2 IPs. Total peak luminosity for multiple IPs is given in parenthesis;
- (2) Energy calibration possible to 100 keV accuracy for MZ and 300 keV for MW ;
- (3) Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes

rv/	Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
' y		nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
		[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
	$FCC-ee^{1,2}$	0.24	7.7(28.9)	0-2	13-18	12-18	290
v		(0.09-0.37)					
у.	$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
		(0.09-0.37)					
	ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
	factory	(0.09-1)					
	CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
	factory	(0.09-1)					
	CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
	Copper Collider)	(0.25 - 0.55)					
⊃s ∣	$CERC^3$ (Circular	0.24	78	5-10	19-24	12-30	90
	ERL Collider)	(0.09-0.6)					
	$\operatorname{ReLiC}^{1,3}$ (Recycling	0.24	165(330)	5-10	>25	7-18	315
	Linear Collider)	(0.25-1)					
	$ERLC^3$ (ERL	0.24	90	5-10	> 25	12-18	250
	linear collider)	(0.25 - 0.5)					
	XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
	$\gamma\gamma$ collider)	(0.125 - 0.14)					
	Muon Collider	0.13	0.01	>10	19-24	4-7	200
	Higgs Factory ³						

Higgs factory summary plot

- Peak luminosity per IP vs CM energy for the Higgs factory proposals as provided by the proponents.
- The right axis shows integrated luminosity for one Snowmass year (10⁷ s).
- Also shown are lines corresponding to the required luminosity for yearly production rates of important processes.

Colliders with high parton CM energy (10 – 15 TeV) summary table

- Main parameters of the colliders with 10 - 15 TeV parton CM energy.
- Total peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.
- Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes.
- The relevant energies for the hadron colliders are the parton CM energy, which can be substantially less (~ 1/10) than hadron CM energy quoted in the table.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20(40)	>10	>25	12-18	~ 300
	(1.5-14)					
LWFA - LC	15	50	>10	>25	18-80	~ 1030
(Laser-driven)	(1-15)					
PWFA - LC	15	50	>10	> 25	18-50	~ 620
(Beam-driven)	(1-15)					
Structure WFA	15	50	>10	> 25	18-50	$\sim \! 450$
(Beam-driven)	(1-15)					
FCC-hh	100	30(60)	>10	> 25	30-50	~ 560
SPPC	125	13 (26)	>10	>25	30-80	~400
	(75-125)					

High energy lepton colliders summary plot

- Peak luminosity per IP vs CM energy for the high energy lepton collider proposals as provided by the proponents.
- The right axis shows integrated luminosity for one Snowmass year (10⁷ s).
- Also shown are lines corresponding to the required luminosity for yearly production rates of important processes.
- The luminosity requirement for 5σ discovery of the benchmark DM scenarios Higgsino and Wino are also shown.

Technical readiness of collider proposals

- ITF developed metrics to compare technical risks of key components and systems
- Proponents were asked to select 5 critically enabling technologies and numerically evaluate each in 5 risk categories.
- Current Technical Readiness Level (TRL): from "Basic principle observed" to "System proven through mission operation"
- Technology validation requirement: from "full-scale" to "separate component validation"
- Cost reduction impact: from "critical a 'no-go' w/o cost reduction" to "desirable"
- Evaluation of performance achievability: from "needs explicit demonstration" to "at state-of-the-art"
- Technically limited R&D timescale to reach TRL 7-8: from "> 20 years" to "0 5 years"
- All details are in the report and on the back-up slides

Collider proposals with critical technologies that require significant pre-project R&D (low TRL)

Facility	Technology 1	Technology 2	Technology 3	Technology 4
CCC	Cryomodules	HOM damping		
CERC, ReLiC	CW SRF system	HOM damping	High energy ERL	Inj./extr. kickers
ERLC	CW SRF system	HOM damping	High energy ERL	
HE ILC	RF systems			
HE CLIC	Two-beam acceleration			
HE CCC	Cryomodules	HOM damping	RF systems	
FCC-hh, SPPC	High field magnets	Inj./extr. kickers	Collimation systems	
Muon collider	High field magnets	High power target	6D muon cooling	
LWFA	Positron source	e+ acceleration	High power lasers	
PWFA	Positron source	e+ acceleration	Two-beam acceleration	RF systems
SWFA	Positron source	Inj./extr. kickers	Two-beam acceleration	RF systems

Luminosity per power consumption

- Figure-of-merit Peak Luminosity (per IP) per **Input Power and** Integrated Luminosity per TWh.
- Luminosity is per IP and integrated luminosity assumes 10⁷ sec/year
- Data points are provided to the ITF by proponents of the respective machine
- The bands around the data points reflect approximate power

ITF project cost model

- Estimated costs and cost uncertainties are critical for project preparation and justification to funding agencies and society.
- ITF estimated Total Project Cost (TPC) in 2021B\$, without contingency and escalation. This "US accounting" includes costs for all technical components, civil construction and utilities, all associated (lab) labor (200k\$/FTE-year), in-project R&D, and other project costs. Cost of existing reusable facilities were not included.
- The 30-parameter ITF cost model was benchmarked against 5 recently completed accelerator projects (XFEL, LHC, Swiss-FEL, NSLS-II, and LCLS-II+HE) with an error of less than 20%.
- A range of cost estimates for novel technologies (identified for each proposal in the ITF report) was obtained from a high value based on operating test facilities and a low value based on reasonably anticipated advances and cost goals from current trends in similar novel technologies. This is the largest uncertainty in the cost estimates for future colliders.

Cost estimates for Higgs factory proposals

- The ITF cost model for the EW/Higgs factory proposals.
- Horizontal scale is approximately logarithmic for the project total cost in 2021B\$ w/o contingency and escalation.
- Black horizontal bars with smeared ends indicate the cost estimate range for each machine.

Project Cost (no esc., no cont.)	4	7	12	18	30	50
FCCee-0.24						
FCCee-0.37						
FNAL eeHF						
ILC-0.25						
ILC-0.5						
CLIC-0.38						
CCC-0.25						
CCC-0.55						
CERC-0.24						
CERC-0.6						
ReLiC-0.25						
ERLC-0.25						
MuColl-0.125						
XCC-0.125						

Summary and final comments

- ITF developed metrics to evaluate and compare 24 future collider proposals in physics reach, R&D needs, schedule, cost, and environmental impact. More proposals have been proposed recently.
- Any of the future collider projects constitute one of, if not, the largest science facility in particle physics. The cost, the required resources and, maybe most importantly, the environmental impact in the form of large electric power consumption will approach or exceed the limit of affordability. ITF suggested that the planning efforts (P5, EPP-2024) recommend that R&D to reduce the cost and the power consumption of future collider projects is given high priority.
- Sustainability of scientific facilities is gaining increased importance. The 2021 European Strategy for Particle Physics – Accelerator R&D Roadmap made the recommendation:
- "Environmental sustainability should be treated as a primary consideration for future facilities, including those in the near-to-medium future, and the R&D programme should be prioritised accordingly. Objective metrics should be set down to allow appraisal of the impact of future facilities over their entire life cycle, including civil-engineering aspects, and of the resources needed to ensure sustainability."
- The US planning efforts should consider a similar recommendation.
- Personal comment: The presently ready-to-build collider proposals with their large energy consumption
 might not be acceptable in today's world. Taking time to do R&D into more energy efficient technologies
 (more efficient CW SRF for ERLs, more efficient He refrigerators, much more efficient lasers for LWFA, ...)
 would allow for collider proposals that are much more acceptable in a future with increasing Global
 Warming. Such R&D might also have important spin-offs for society.

Back-up slides

High energy (3 TeV) lepton colliders summary table

- Main parameters of the lepton collider proposals with CM energy higher than 1 TeV.
- Peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.

 Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
High Energy ILC	3	6.1	5-10	19-24	18-30	~400
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~ 550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~ 700
	(1-3)					
High Energy ReLiC	3	47 (94)	5-10	> 25	30-50	~ 780
	(1-3)					
Muon Collider	3	2.3(4.6)	>10	19-24	7-12	~ 230
	(1.5-14)					
LWFA - LC	3	10	>10	> 25	12-80	~340
(Laser-driven)	(1-15)					
PWFA - LC	3	10	>10	19-24	12-30	~ 230
(Beam-driven)	(1-15)					
Structure WFA - LC	3	10	5-10	>25	12-30	~170
(Beam-driven)	(1-15)					

Lepton-hadron colliders summary table

- Main parameters of the lepton-hadron collider proposals.
- For lepton-hadron colliders only, the parameters (years of pre-project R\&D, years to first physics, construction cost and operating electric power) show the increment needed for the conversion of the hadron-hadron collider to a leptonhadron collider.

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
LHeC	1.2	1	0-2 ?	13-18	<4	~140
FCC-eh	3.5	1	0-2 ?	> 25	<4	~140
CEPC-SPPC-ep	5.5	0.37	3-5	> 25	<4	~ 300

Summary table of collider versions located at FNAL

- Main parameters of the collider proposals located at FNAL.
- Total peak luminosity for multiple IPs is given in parenthesis.
- The cost range is for the single listed energy.

	Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
		nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
		[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
	High Energy LeptoN	0.25	1.4	5-10	13-18	7-12	~110
	(HELEN) e^+e^- colider	(0.09-1)					
	e^+e^- Circular Higgs	0.24	1.2	3-5	13-18	7-12	~ 200
	Factory at FNAL	(0.09-0.24)					
	Muon Collider	10	20 (40)	>10	19-24	12-18	~ 300
	at FNAL	(6-10)					
Ī	<i>pp</i> Collider	24	3.5(7.0)	>10	>25	18-30	~ 400
	at FNAL						

- Assume that significant existing accelerator infrastructure at FNAL will be re-used.
- There is also a recent proposal for a CCC version that can be located at FNAL.
- Other recently developed collider proposals, such as CERC, ReLiC, or wake field accelerators, could also be evaluated for being located at FNAL.

Hadron colliders summary plot

- Peak luminosity per IP vs CM energy for the high energy hadron collider proposals as provided by the proponents.
- The right axis shows integrated luminosity for one Snowmass year (10⁷s).
- Also shown are the luminosity requirements with two possible initial states gg and qq :

- The dashed curve represents the luminosity needed (assuming a 10-year run) to have linear increase of new physics mass reach with CM energy.
- The solid lines represent the luminosity requirements for 70% of this new physics mass reach.

Technical risk registry

 Technical risk registry of accelerator components and systems for future e⁺e⁻ and ep colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

	FCCee/CEPC	ILC	HE ILC	CCC	HE CCC	CLIC	HE CLIC	CERC	ReLiC	HE ReLiC	ERLC	XCC	LHeC/FCCeh
RF Systems													
Cryomodules													
HOM detuning/damp													
High energy ERL													
Positron source													
Arc&booster magnets													
Inj./extr. kickers													
Two-beam acceleration													
Damping rings													
Emitt. preservation													
IP spot size/stability													
High power XFEL													
e^- bunch compression													
High brightness e^- gun													
IR SR and asymm.quads													

Technical Risk Factor	Score	Color Code
$\mathrm{TRL}=1,\!2$	4	
$\mathrm{TRL}=3,\!4$	3	
$\mathrm{TRL}=5,\!6$	2	
$\mathrm{TRL}=7,\!8$	1	

Technical risk registry

 Technical risk registry of accelerator components and systems for future very high energy pp, muon and WFA colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

Technical Risk Factor	Score	Color Code
$\mathrm{TRL}=1,2$	4	
$\mathrm{TRL}=3,4$	3	
$\mathrm{TRL}=5,\!6$	2	
$\mathrm{TRL}=7,\!8$	1	

	FCChh	SPPC	Coll.Sea	MC-0.125	MC-3-6	MC-10-14	LWFA-LC	PWFA-LC	SWFA-LC
RF Systems									
High field magnets									
Fast booster magnets/PSs									
High power lasers									
Integration and control									
Positron source									
$5D \ \mu$ -cooling elements									
Inj./extr. kickers									
Two-beam acceleration									
e^+ plasma acceleration									
Emitt. preservation									
FF/IP spot size/stability									
High energy ERL									
Inj./extr. kickers									
High power target									
Proton Driver									
Beam screen									
Collimation system									
Power eff.& consumption									

23

Technical risk summary table

- Technical risk categories (darker blue is higher risk).
- "Design status":
- I TDR complete
- II CDR complete
- III substantial documentation
- IV limited documentation and parameter table
- V parameter table
- "Overall risk tier":
- 1 lower overall technical risk

• ...

 4 – multiple technologies require further R&D

Proposal Name	Collider	Lowest	Technical	Cost	Performance	Overall
(c.m.e. in TeV)	Design	TRL	Validation	Reduction	Achievability	Risk
	Status	Category	Requirement	Scope		Tier
FCCee-0.24	II					1
CEPC-0.24	II					1
ILC-0.25	I					1
CCC-0.25	III					2
CLIC-0.38	II					1
CERC-0.24	III					2
ReLiC-0.24	V					2
ERLC-0.24	V					2
XCC-0.125	IV					2
MC-0.13	III					3
ILC-3	IV					2
CCC-3	IV					2
CLIC-3	II					1
ReLiC-3	IV					3
MC-3	III					3
LWFA-LC 1-3	IV					4
PWFA-LC 1-3	IV					4
SWFA-LC 1-3	IV					4
MC 10-14	IV					3
LWFA-LC-15	V					4
PWFA-LC-15	V					4
SWFA-LC-15	V					4
FCChh-100	II					3
SPPC-125	III					3
Coll.Sea-500	V					4

R&D Programs and Facilities

- Duration and integrated cost of the past, present, and proposed R&D programs and facilities (the latter indicated by a shift to the right).
- Funding sources for the past and present programs are indicated ("OHEP" - directed R&D in the DOE OHEP, "GARD" - General Accelerator R&D and facilities operation program in the OHEP, "LDG/CERN" aspirational support requested as part of the European Accelerator R&D Roadmap).
- Inputs with estimates from the proponents on the total cost of demonstration projects and pre-CD2 validations have "tbd" as funding source.

R&D Program	Benefiting	Duration	Integrated	Funding	Key Topics		
Facility Name	Concept	(Years)	Cost (M\$)	Source	Rationale		
Linear e^+e^- colliders							
NLC/NLCTA/FFTB	$\rm NLC/C^3$	14	120	OHEP	NC RF gradient, final focus		
TESLA/TTF	ILC	~ 10	150	DESY/Collab	SCRF CMs and beam ops		
ILC in US/FAST	ILC	6	250	OHEP	SCRF CMs and beam ops		
ILC in Japan/KEK	ILC	10	100	KEK	SCRF CMs and beam ops		
ATF/AFT2	ILC	15	100	$\mathrm{KEK}/\mathrm{Intl}$	LC DR and final focus		
CLIC/CTF/CTF3	CLIC	25	500	$\operatorname{CERN}/\operatorname{Intl}$	2-beam scheme and driver		
General RF R&D	All LCs	8	160	GARD	see RF Roadmap; incl facilities		
ILC in Japan/KEK	ILC	5	50	KEK	next 5 yr request		
High- G RF & Syst.	CLIC/SRF	5	150	LDG/CERN	NC/SC RF and klystrons		
$C^3 input$	C^3	8	200	tbd	72-120 MV/m CMs, design		
HELEN input	HELEN	n/a	200	tbd	pre-TDR, TW SRF tech		
ILC-HE input	ILC-HE	20	100	tbd	$10 \text{ CMs } 70 \text{MV/m} \ Q = 2 \text{e} 10$		
ILC-HighLumi input	ILC-HL	10	75	tbd	31.5 MV/m at Q=2e10		
Circular/ERL ee/eh c	olliders				,		
CBB	LCs	6	25	NSF	high-brightness sources		
CBETA	ERLCs	5	25	NY State	multi-turn SRF ERL demo		
ERLs/PERLE	ERLCs	5	80*	LDG/CERN	NC/SC RF, klystrons		
FNALee input	FNALee	n/a	100	tbd	design and demo efforts		
LHeC/FCCeh input	eh-coll.	n/a	100	tbd	demo facility, design		
CEPC input	CEPC	6	154	tbd	SRF, magn. cell, plasma inj.		
ReLiC input	ReLiC	10	70	tbd	demo $Q=1e10$ at 20 MV/m		
XCC input	XCC	7	200	tbd	demo and design efforts		
CERC input	CERC	8	70	tbd	demo high- \vec{E} ERL at CEBAF		
Muon colliders							
NFMCC	MC	12	50	OHEP	design study, prototyping		
US MAP	MC	7	60	OHEP	IDS study, components		
MICE	MC	12	60	UK/Collab	4D cooling cell demo		
IMCC/pre-6D demo	MC-HE	5	70	LDG/CERN	pre-CDR work, components		
IMCC/6D cool.	MC-HE	7	150	$\overline{\mathrm{CERN}/\mathrm{Collab}}$	6D cooling facility and R&D		
Circular <i>hh</i> colliders				/			
LHC Magnet R&D	LHC	12	140	CERN	8T NbTi LHC magnets		
US LARP	LHC	15	170	OHEP	more LHC luminosity faster		
SC Magnets General	pp. uu	10	120	GARD	HF-magnets and materials		
US MDP	рр. цц	5	40	GARD	see HFM Roadmap		
HFM Program	FCChh	7	170	LDG/CERN	16 T magnets for FCChh		
FNALpp input	FNALpp	n/a	100	tbd	25T magnets demo		
FCChh input	FCChh	20	500	tbd	large demo. R&D and design		
Coll.Sea input	CollSea	16	400	tbd	300m magnets underwater		
AAC colliders							
SWFA/AWA	SWFA-LC	8	40	GARD	2-beam accel in THz structures		
LWFA/BELLA	LWFA-LC	8	80	GARD	laser-plasma WFA B&D		
LWFA/DESY	LWFA-LC	10	30	DESY	laser-plasma WFA B&D		
PWFA/FACET-LII	PWFA-LC	13	135	GARD	2-beam PWFA, facility		
AWAKE	PWFA-LC	8	40	CERN/Collab	proton-plasma PWFA facility		
EUPBAXIA	LWFA-LC	10	570	EUR/Collab.	high quality/eff. LWFA B&D		
IWFA/DESY	LWFA-LC	10	80	DESY	laser WFA R&D		
SWFA input	SWFA-LC	8	100	tbd	0.5 & 3GeV demo facilities		
IWFA input	LWFA-LC	15	130	tbd	$2nd BL e^+$ kBELLA project		
PWFA input	PWFA-LC	10	100	thd	demo and design effort		
- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 ,,111 10	10	100		active und doorgh chort		

Power, complexity, environmental impact

- Summary table of categories of electric power consumption, size, complexity and required radiation mitigation.
- Darker blue means more impact.
- The WFA at 15 TeV use round beam collisions and have lower power consumption than at 3 TeV with flat beam collisions.

Power	Size	Complexity	Radiation	26
Consumption			Mitigation	
290	91 km	Ι	Ι	Ī
340	$100 \mathrm{km}$	Ι	Ι	
140	$20.5~\mathrm{km}$	Ι	Ι	
110	11.4 km	II	Ι	
150	$3.7 \mathrm{km}$	Ι	Ι	
90	91 km	II	Ι	
315	$20 \mathrm{km}$	II	Ι	
250	$30 \mathrm{km}$	II	Ι	
90	$1.4 \mathrm{km}$	II	Ι	
200	$0.3~\mathrm{km}$	Ι	II	
~ 400	$59~{ m km}$	II	II	
~ 550	$50.2~\mathrm{km}$	III	II	
~ 700	$26.8 \mathrm{~km}$	II	II	
~ 780	$360 \mathrm{km}$	III	Ι	
~ 230	10-20 km	II	III	
~ 340	$1.3 \mathrm{~km}$	II	Ι	
	(linac)			
~ 230	14 km	II	II	
~ 170	18 km	II	II	
~ 300	$27~\mathrm{km}$	III	III	
~ 1030	$6.6 \mathrm{km}$	III	Ι	
~ 620	14 km	III	II	
~ 450	90 km	III	II	
~ 560	91 km	II	III	
~400	100 km	II	III	
	Power Consumption 290 340 140 110 150 90 200 315 250 90 200 200 200 200 200 200 200 200 200	Power Consumption Size 290 91 km 340 100 km 140 20.5 km 110 11.4 km 150 3.7 km 90 91 km 315 20 km 250 30 km 90 1.4 km 250 30 km 90 1.4 km 200 0.3 km 200 0.3 km 200 59 km ~400 59 km ~250 50.2 km ~2700 26.8 km ~230 10-20 km ~230 10-20 km ~230 10-20 km ~230 10-20 km ~230 14 km ~170 18 km ~1030 6.6 km ~450 90 km ~450 90 km ~450 90 km	Power Consumption Size Complexity 290 91 km I 340 100 km I 140 20.5 km I 110 11.4 km II 150 3.7 km I 90 91 km II 90 91 km II 315 20 km II 90 1.4 km II 90 1.4 km II 90 0.3 km I 90 1.4 km II 200 0.3 km I \sim 400 59 km II \sim 700 26.8 km II \sim 700 26.8 km II \sim 730 10-20 km II \sim 230 10-20 km II \sim 230 14 km II \sim 170 18 km II \sim 1030 6.6 km III \sim 450 90 km III \sim 450 90 km II </td <td>Power ConsumptionSizeComplexityRadiation Mitigation29091 kmII340100 kmII14020.5 kmII11011.4 kmIII1503.7 kmII9091 kmIII31520 kmIII25030 kmIII901.4 kmIII900.3 kmIII901.4 kmIIII2000.3 kmIII$\sim 400$59 kmIIII$\sim 700$26.8 kmIIII$\sim 780$360 kmIIII$\sim 230$10-20 kmIIII$\sim 230$14 kmIIII$\sim 170$18 kmIIII$\sim 100$27 kmIIIII$\sim 620$14 kmIIIII$\sim 450$90 kmIIIII$\sim 400$100 kmIIIII</td>	Power ConsumptionSizeComplexityRadiation Mitigation29091 kmII340100 kmII14020.5 kmII11011.4 kmIII1503.7 kmII9091 kmIII31520 kmIII25030 kmIII901.4 kmIII900.3 kmIII901.4 kmIIII2000.3 kmIII ~ 400 59 kmIIII ~ 700 26.8 kmIIII ~ 780 360 kmIIII ~ 230 10-20 kmIIII ~ 230 14 kmIIII ~ 170 18 kmIIII ~ 100 27 kmIIIII ~ 620 14 kmIIIII ~ 450 90 kmIIIII ~ 400 100 kmIIIII

Timeline analysis

Construction time of large projects is determined by

- Time to establish project and complete pre-project R&D
- Annual spending rate

•

- Availability of experienced staff
- Pace of civil construction and fabrication of components

- ITF estimated the timeline of 3 stages: basic design and pre-project R&D; TDR and industrialization; construction period;
- All projects are treated as "stand-alone" (except ep colliders) and timeline starts now or when funding starts to be available. A technically limited construction time was assumed.
- "Years of pre-project R&D" was informed by the technical risk evaluation.
- "Time to first physics" is not just the sum of the 3 stages above since some activities can proceed in parallel.

Timeline of proposals

- Summary of the ITF judgment on collider projects' R&D duration, design and industrialization, construction, and combined time to first physics.
- The first three columns present these timescales as submitted to the ITF by the project proponents.
- The first group of rows are Higgs and electroweak physics colliders, the second group are energy-frontier lepton colliders, and the third group includes hadronhadron and lepton-hadron colliders.

	Subm'd	Subm'd	Subm'd	ITF	ITF	ITF	ITF	• •
Collider	R&D	Design	Project	Judgement	Judgement	Judgement	Judgement	28
Name	Durat'n	to TDR	Constrn.	Duration	Design &	Project	Combined	
- c.m.e.	to CDR	Durat'n	Time	Preproject	Industr'n	Constrn.	"Time to	
(TeV)	(yrs)	(yrs)	(yrs)	R&D	Duration	Duration	the First	
				to CDR	to TDR	post $CD3$	Physics"	
ILC-0.25	0	4	9	0-2 yrs	3-5 yrs	7-10 yrs	$< 12 { m \ yrs}$	
ILC $(6x lumi)$	10	5	10	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
CLIC-0.38	0	6	6	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
FCCee-0.36	0	6	8	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
CEPC-0.24	6	6	8	0-2 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
CCC-0.25	2-3	4-5	6-7	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
FNALee-0.24	tbd	tbd	tbd	3-5 yrs	3-5 yrs	7-10 yrs	13-18 yrs	
CERC-0.6	3	5	10	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs	
HELEN-0.25	tbd	tbd	tbd	5-10 yrs	5-10 yrs	7-10 yrs	19-24 yrs	
ReLiC-0.25	3	5	10	5-10 yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
ERLC-0.25	8	5	10	5-10 yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
MC-0.125	11	4	tbd	> 10 m yrs	5-10 yrs	7-10 yrs	19-24 yrs	
XCC-0.125	2-3	3-4	3-5	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs	
SWLC-0.25	8	5	10	5-10 yrs	3-5 yrs	7-10 yrs	19-24 yrs	
ILC-1	10	5	5 - 10	5-10 yrs	3-5 yrs	10-15 yrs	13-18 yrs	
ILC-2	10	5	5 - 10	> 10 m yrs	3-5 yrs	10-15 yrs	19-24 yrs	
ILC-3	20	5	10	$> 10 { m yrs}$	3-5 yrs	10-15 yrs	19-24 yrs	
CLIC-3	0	6	6	3-5 yrs	3-5 yrs	10-15 yrs	19-24 yrs	
CCC-2	2-3	4-5	6-7	3-5 yrs	3-5 yrs	10-15 yrs	19-24 yrs	
ReLiC-2	3	5	10	5-10 yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
MC-1.5	11	4	tbd	> 10 m yrs	5-10 yrs	7-10 yrs	19-24 yrs	
MC-3	11	4	tbd	$> 10 { m yrs}$	5-10 yrs	7-10 yrs	19-24 yrs	
MC-10	11	4	tbd	> 10 m yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
MC-14	11	4	tbd	> 10 m yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
PWFA-LC-1	15	tbd	tbd	> 10 m yrs	5-10 yrs	7-10 yrs	19-24 yrs	
PWFA-LC-15	15	tbd	tbd	> 10 m yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
LWFA-LC-3	15	tbd	tbd	> 10 m yrs	$> 10 { m \ yrs}$	10-15 yrs	$>25~{ m yrs}$	
LWFA-LC-15	15	tbd	tbd	> 10 m yrs	$> 10 { m \ yrs}$	$> 16 { m \ yrs}$	$>25~{ m yrs}$	
SWFA-LC-1	tbd	tbd	tbd	> 10 m yrs	5-10 yrs	7-10 yrs	19-24 yrs	
SWFA-LC-15	tbd	tbd	tbd	> 10 m yrs	5-10 yrs	10-15 yrs	$> 25 { m \ yrs}$	
FCChh-100	2	20	15	> 10 m yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
SPPC-75	15	6	8	> 10 yrs	5-10 yrs	10-15 yrs	$>25~{ m yrs}$	
CollSea-500	10	6	6	> 10 yrs	5-10 yrs	$> 16 { m \ yrs}$	$> 25 { m \ yrs}$	
CEPC-SPPC	tbd	tbd	tbd	3-5 yrs	3-5 yrs	$< 6 { m \ yrs}$	$> 25 { m \ yrs}$	
LHeC	0	5	5	0-2 yrs	3-5 yrs	$< 6 { m \ yrs}$	13-18 yrs	
FCC-eh	0	5	5	0-2 yrs	3-5 yrs	$< 6 { m \ yrs}$	$>25~{ m yrs}$	

Cost estimates for multi-TeV lepton collider proposals

- The ITF cost model for the multi-TeV lepton collider proposals.
- Horizontal scale is approximately logarithmic for the project total cost in 2021B\$ w/o contingency and escalation.
- Black horizontal bars with smeared ends indicate the cost estimate range for each machine.

Project Cost (no esc., no cont.)	4	7	12	18	30	50
ERLC-1						
ILC-1						
ILC-3						
CCC-2						
CLIC-3						
ReLiC-3						
MC-3						
MC-10						
LPWA-LC-3						
LPWA-LC-15						
BPWA-LC-3						
BPWA-LC-15						
SWFA-LC-3						
SWFA-LC-15						

Cost estimates for hadron and lepton-hadron colliders, and FNAL site-filler proposals

- The ITF cost model for the energy frontier hadron collider, electronproton colliders (incremental cost from hadron collider only) and for the proposed Fermilab site-filler colliders.
- Horizontal scale is approximately logarithmic for the project total cost in 2021B\$ without contingency and escalation.
- Black horizontal bars with smeared ends are the cost estimate range for each machine.
- Right-arrow for the 500 TeV "Collider-in-the-Sea" indicates higher than 80B\$ cost.
- Left-arrow for the electron-proton "SPPC-CEPC" collider concept indicates smaller than 4B\$ cost.

Project Cost (no esc., no cont.)	4	7	12	18	30	50
SPPC-125						
FCChh-100						
pp-inSea-500						-
LHeC-1.2						
FCCeh-3.5						
SPPCep-4.2						
HELEN-0.25						
FNALee-0.25						
FNAL-MC-6						
FNALpp-24						