

γ-ray spectroscopy for nuclear structure; β-decay studies in the ARIEL era

Paul Garrett University of Guelph

What will ARIEL do for us?

- Excellent yields near the fission peaks
- Multi-user
 capability that
 enables
 experiments of
 longer
 duration
- *Both* points are
 important to
 our future
 programme

Our workhorse – the GRIFFIN spectrometer

Otsaka setup for β-γ angular correlations with spin-polarized beams also produces important results and extend capabilities

- Three general themes
 - Studies related to *fundamental symmetries*, e.g. superallowed Fermi β decay,
 characterized by *high-precision* measurements
 - Structure information on the daughters gathered in the process
 - Studies related to nuclei *far from stability*, characterized by *weak beams* and *low rates*
 - Can be compensated somewhat by GRIFFIN's capabilities or long durations
 - Studies related to nuclei *on or near stability*, characterized by *intense beams* and *high rates*
 - ARIEL can extend the intense-beam envelope into the photofission yield peak region

My view:

- Let other facilities pursue the extremes we should focus on where we have the superior beam+detection efficiency+duration advantage
- Push the level of statistics low-statistics experiments lead to high-speculation physics;
 we should aim for definitive experiments

Focus on shape coexistence – why are they interesting?

- presence of states in the same nucleus within a narrow energy range of two (or more) states that have well defined and distinct properties that can be interpreted in terms of different intrinsic shapes
- The shapes we observe, e.g., spherical, prolate, oblate, triaxial

emerge as a consequence of the nucleon-nucleon interaction manifest in a many-body system

- The presence of competing shapes due to effects of correlations, especially pairing and
 quadrupole-quadrupole correlations amongst nucleons, overcoming cost of energy promoting
 particles into different orbits even across major shell gaps
- Studies of shape coexistence enables us to study effects of correlation energies on deformation (or *vice versa*) within a system having the same number of protons and neutrons

Multiparticle-multihole states and shape coexistence

- Deformation is driven by the
 quadrupole-quadrupole interaction
 between protons and neutrons the
 more valence particles of both types,
 the greater the deformation (up to a point)
- There can be a substantial gain in
 energy due to correlations between the
 particles such that the energy cost for
 promoting particle across shells can be
 offset
- The most common mechanism to
 generate states with different shapes
 involves the creation of multiparticlemultihole states

We have a strong programme in shape coexistence studies with β decay

PRL 110, 022504 (2013)	PHYSICAL REVIEW LETTERS	week ending 11 JANUARY 2013		
Collective Structure in ⁹⁴Zr and Subshell Effects in Shape Coexistence A. Chakraborty, ^{1,2,*} E. E. Peters, ² B. P. Crider, ¹ C. Andreoiu, ³ P. C. Bender, ⁴ D. S. Cross, ³ G. A. Demand, ⁵				
A. B. Garnsworthy, ⁴ P. E. Garrett, ⁵ G. Hackman, ⁴ B. Hadinia, ⁵ S. Ketelhut, ⁴ Ajay Kumar, ^{1,2,†} K. G. Leach, ⁵ M. T. McEllistrem, ¹ J. Pore, ³ F. M. Prados-Estévez, ^{1,2} E. T. Rand, ⁵ B. Singh, ⁶ E. R. Tardiff, ⁴ ZM. Wang, ^{3,4} J. L. Wood, ⁷ and S. W. Yates ^{1,2}		umar, ^{1,2,†} K. G. Leach, ⁵ Fardiff, ⁴ ZM. Wang, ^{3,4}	Editors' Suggestion Featured in Physics	_
			Multiple Shape Coexistence in ^{110,112} Cd	
P	HYSICAL REVIEW LETTERS 125, 172501 (2020)		 P. E. Garrett,^{1,2} T. R. Rodríguez,³ A. Diaz Varela,¹ K. L. Green,¹ J. Bangay,¹ A. Finlay,¹ R. A. E. Austin,⁴ G. C. D. S. Bandyopadhyay,¹ V. Bildstein,¹ S. Colosimo,⁴ D. S. Cross,⁶ G. A. Demand,¹ P. Finlay,¹ A. B. Garnswort G. F. Grinyer,⁷ G. Hackman,⁵ B. Jigmeddorj,¹ J. Jolie,⁸ W. D. Kulp,⁹ K. G. Leach,^{1,*} A. C. Morton,^{5,†} J. N. Or C. J. Pearson,⁵ A. A. Phillips,¹ A. J. Radich,¹ E. T. Rand,^{1,‡} M. A. Schumaker,¹ C. E. Svensson,¹ C. Sumithrarach S. Triambak,² N. Warr,⁸ J. Wong,¹ J. L. Wood,¹⁰ and S. W. Yates¹¹ 	Ball, ⁵ hy, ⁵ ce, ² nchi, ^{1,†}
Absence of L	ow-Energy Shape Coexistence in ⁸⁰ Ge: The Non of a Proposed Excited 0^+_2 Level at 639 keV	observation		
 F. H. Garcia⁽⁶⁾, ^{1,*} C. Andreoiu K. Whitmore, ¹ F. A. Ali, ^{7,8} N. A. M. Forney, ¹² M. Gascoine, ¹ E. E. Peters, ¹⁵ M. M. Rajaba 	 h,¹ G. C. Ball,² A. Bell,¹ A. B. Garnsworthy,² F. Nowacki,^{3,4} G. Bernier,^{2,9,†} S. S. Bhattacharjee,^{2,‡} M. Bowry,² R. J. Coleman,¹ G. Hackman,² K. G. Leach,¹³ A. N. Murphy,² C. R. Natzke,¹⁴ ali,¹⁶ K. Raymond,¹ C. E. Svensson,¹⁰ R. Umashankar,¹⁴ J. W. 	C. M. Petrache, ⁵ A. Poves, ⁶ ⁰ I. Dillmann, ^{2,11} I. Djianto, ¹ ^{4,13} B. Olaizola, ¹⁴ K. Ortner, ¹ Villiams, ^{1,§} and D. Yates ^{14,9}	PHYSICAL REVIEW LETTERS 130, 122502 (2023)	
			First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ⁷⁴ Zn: Suggestion for a Northern Extension of the $N = 40$ Island of Inversion	
			 M. Rocchini[®],^{1,*} P. E. Garrett[®],¹ M. Zielińska[®],² S. M. Lenzi[®],^{3,4} D. D. Dao[®],⁵ F. Nowacki,⁵ V. Bildstein,¹ A. D. MacLean,¹ B. Olaizola[®],^{6,†} Z. T. Ahmed,¹ C. Andreoiu[®],⁷ A. Babu,⁶ G. C. Ball,⁶ S. S. Bhattacharjee,^{6,} H. Bidaman,¹ C. Cheng,⁶ R. Coleman,¹ I. Dillmann[®],^{6,8} A. B. Garnsworthy,⁶ S. Gillespie,⁶ C. J. Griffin[®],⁶ G. F. Griny, G. Hackman,⁶ M. Hanley[®],¹⁰ A. Illana[®],¹¹ S. Jones,¹² A. T. Laffoley,¹ K. G. Leach[®],¹⁰ R. S. Lubna,^{6,8} J. McAfee C. Natzke,^{6,10} S. Pannu,¹ C. Paxman[®],^{6,13} C. Porzio[®],^{6,14,15,} A. J. Radich,¹ M. M. Rajabali,¹⁶ F. Sarazin[®],¹⁰ K. Schw S. Shadrick,¹⁰ S. Sharma,⁹ J. Suh,⁹ C. E. Svensson,¹ D. Yates[®],^{6,17} and T. Zidar¹ 	[‡] er [⊚] , ⁹ e, ^{6,13} varz, ⁶
8/3/23		Paul Garrett, ARIEL	Science TRIUMF 2023	7

Shape coexistence in the nuclear landscape

- Regions of shape coexistence are now known to be located throughout the nuclear chart, although still mainly concentrated in the vicinity of closed shell or subshells
 - There has been much activity recently, including areas suggested to possess multiple shape coexistence C, Si/Mg, Ni, Sr/Zr, Cd, Pb/Hg

What are the experimental signatures of shape coexistence?

- Level energies
 - Appearance of "unexpected" levels at low energies, e.g., low-lying 0⁺ states
 - Appearance of rotational bands, especially in a spherical nucleus
 - Inferred moments of inertia
- Transition rates vastly different *B*(*E*2) values within bands
- Transfer reaction cross sections large enhancements of cross sections, especially to excited 0⁺ states
- Quadrupole moments measure of charge distribution revealing deformation
- Charge radii directly measuring size of nuclear state
- Sets of EM transition matrix elements to form "invariant" quantities
- E0 transition strengths enhancements to E0 transition rates require mixing of states with different deformations

From γ-γ coincidence measurements with Ge detectors

- From lifetime measurements with
- LaBr₃ detectors

The N=20 "island of inversion"

Expected spherical shape for the ground states, but instead they are deformed

The N=20 island of inversion region

Recent 3-level mixing calculations suggested that the 30 Mg ground state was a mixture of the normalordered 0p-0h and intruder 2p-2h configurations, with the 0_2^+ a mixture of the 2p-2h and 4p-4h configurations, and the existence of an unknown 0_3^+ state that has the dominant 0p-0h configuration

 0_2^+ state in ³²Mg believed to have $t_{1/2}$ in range of 10 - 38 ns

Can reach 10^{10} decays of 30 Na in ~ 10 days, 10^8 decays of 32 Na in ~ 3 weeks

The Ni isotopes

Variety of highly deformed structures observed in vicinity of ⁵⁶Ni by Lund group (e.g., ⁵⁶Ni by D. Rudolf et al., PRL 82, 3763 (1999))

Suggestions for multiple shapes in ⁶⁴⁻⁶⁸Ni through comparisons with MCSM

Suggested shapes
need to be
confirmed through
additional
measurements

S. Leoni et al., PRL 118, 162502 (2017) N. Mărginean et al., PRL 125, 102502 (2020)

Trouble in paradise for E0s – the mysterious case of the Ni isotopes

Paul Garrett, ARIEL Science TRIUMF 2023

Garrett, Zielinska, and Clement, PPNP 124, 123931 (2022)

Example – conflicting interpretations in ⁶⁸Ni

- Key transition 2₁⁺ → 0₂⁺ ~ 9 W.u. establishes a deformed structure, but was a very weak transition observed in one experiment only
- An alternative interpretation involves a seniority-2 structure, with the ground state and 0₂⁺ state involving a mixture of (g_{9/2})²+(p_{1/2})² neutrons
- To study Ni isotopes, ideally extract Co beams (successfully done at ISOLDE); a Co laser scheme for use with TRILIS is ready
- Rates will still be low to reach ⁶⁸Ni prime example of extended beam time making use of multi-user capability

Paul Garrett, ARIEL Science TRIUMF 2023

Zr isotopes undergo the most rapid change of ground state structure across the nuclear chart

• There have been numerous experimental investigations, but firm evidence for shape coexistence has been lacking, and only recently *B(E2)*s determined for deformed states

⁹⁸Zr – lifetimes measured in ⁹Be induced fission of ²³⁸U, and ⁹⁶Zr+¹⁸O 2p transfer reaction

V. Karayonchev et al., PRC 102, 064314 (2020)

Substantial differences in both measured lifetimes, and assignments/interpretations

P. Singh et al., PRL 121, 192501 (2018)

Singh et al. favoured multiple shape coexistence with deformed band structures, Karayonchev et al. favoured a multiphonon-like structure with configuration mixing **Knowledge of excited** 0^+ configurations in N> 60 Zr and Sr

isotopes very limited

Extending studies of the Sr-Zr isotopes

Need to map the low-spin configurations past N=60 transition point

8/3/23

- We can reach ⁹⁸Sr, ¹⁰⁰Zr with existing beams and achieve high-statistics data sets
- ARIEL advantage the required Sr, Rb beams are close to the lower mass fission peak, enabling us to push well past *N*=60

Energy systematics Cd isotopes

The presumed shapes are based on systematics and similarities of decay properties – but become increasingly uncertain towards the neutron rich isotopes

Energy systematics Cd isotopes

- What is happening with the 0₂⁺ state in ¹²⁰Cd? If
 a recent measurement
 is correct, it undergoes
 a significant drop in
 energy in ¹²⁰Cd.
- There are no firm
 candidates for these
 configurations beyond
 ¹²⁰Cd the 0₂⁺ state in
 ¹²²Cd would match the
 energy of the 0₃⁺ in
 ¹²⁰Cd
- No candidates for excited 0⁺ states in ¹²⁴Cd and heavier

Above mid-neutron-shell we do not have a good understanding of the structure

Recent results on ¹⁸⁶Pb – elucidating triple shape coexistence

Oblate band

2624

2162

1738

1337

945

659

0

 (10^+_2)

 6^{+}_{2}

 0^{+}_{3}

⁵⁷¹659

 $\frac{390}{463}479$

 $\frac{326}{300}414$

⁹⁵283

⁸⁵⁷₉₂₉945

³¹³₃₈₆401 4¹₂

³⁷⁴/₄₄₇ 462

 $\frac{336}{400}424$

A spectroscopic *tour* de force, using yy and γe^{-} spectroscopy with recoil decay tagging at Jyvaskyla, observed the weak, in-band $2_1^+ \rightarrow 0_2^+$ transition establishing the 0_2^+ state as the head of the prolate band with $B(E2; 2_1^+ \rightarrow 0_2^+) =$ 190(80) W.u.

Results indicated small mixing of 0₂⁺ and 0₃⁺ states

8/3/23

Ojala et al, Nature Communications **5**, 213 (2022)

Prolate band

 $\frac{518}{591}606$

 $\frac{462}{535}550$

 $\frac{398}{470}486$

415

261

 $\frac{447}{520}535$

 0^{-1}

3317

2711

2161

1675

1260

923

662

535

574 662

14⁺

12⁺₁

 10^{+}_{1}

Shape coexistence well established in Hg isotopes

- Difference in mean-squared charge radii for Hg
 show odd-even staggering large changes in
 ground state deformation observed
- Energy systematics of deformed intruder states
 display "typical" parabolic dependence on
 valence neutron number
- Information on excited 0⁺ states drops dramatically outside region that can be probed with two-nucleon-transfer reactions
 - population cross section in many reactions,
 especially HI fusion evaporation, often extremely
 small
 - Is there another configuration as in the Pb isotopes and triple shape coexistence?

Garrett, Zielińska, & Clement, PPNP **124**, 103931 (2022)

- There are a wide variety of open nuclear structure questions ARIEL facility with increased reach, and especially multi-user capability, will enable studies to address these questions
- While my focus was on shape-coexistence in even-even, studies of odd-A vital to establish and track single-particle structures
- A coordinated approach with experiments at other facilities (e.g., transfer or Coulomb excitation at TIGRESS, measurements at ISOLDE or FRIB, etc.) will reap enormous benefits
- Systematics, systematics, systematics,...
 - It's not stamp collecting, this is often where the physics lies!
- ... but don't get caught up in doing mediocre experiments on a dozen nuclei instead of outstanding measurements on a few

Example of the data for deformed 2*p*-2*h* "intruder"

bands at closed shells – ¹¹⁶Sn

124, 103931 (2022)

Cross-section ratio

Similarity of ⁹⁸Sr, ¹⁰⁰Zr structure

Triple shape coexistence in ¹⁸⁶Pb

¹⁸⁶Pb *the* famous example of multiple-shape coexistence

α-decay similar to α-transfer to gain information
 on 2*p*-2*h* enhancements

Andreyev et al., Nature **405**, 430 (2000).

The "evolution" of the structure of the Cd isotopes

Organization of the ¹⁸⁸Hg level scheme

- Using the extracted branching ratios, *E2/M1* mixing ratios, absolute or relative *B(E2)* values determined
 - Transitions labelled in absolute *B*(*E2*) in Wu (blue), or relative *B*(*E2*) (black italic), showing clear preference for in-band decays

Comparison to model calculations: E2 transitions

of **G**UEL

γ-ray spectroscopy – a very versatile tool

UNIVERSITY FGUELPH

- Weak interaction tests e.g. studies of Fermi superallowed β-decay
 - ⁶²Ga decay beam rate of 6 12k/s, placement
 of γ-rays to 1 ppm level permits very sensitive
 tests related CKM matrix unitarity

A.D. MacLean et al., PRC 102, 054325 (2020)

Nuclear structure investigations e.g. ⁷⁴Zn and *N*=40 "island of inversion"

⁹⁸Zr – lifetimes measured in ⁹Be induced fission of ²³⁸U, and ⁹⁶Zr+¹⁸O 2p transfer reaction

V. Karayonchev et al., PRC 102, 064314 (2020)

Substantial differences in both measured lifetimes, and assignments/interpretations

P. Singh et al., PRL 121, 192501 (2018)

W. Witt et al., PRC 98, 041302(R) (2018)