γ-ray spectroscopy for nuclear structure;
β-decay studies in the ARIEL era

Paul Garrett
University of Guelph

Excellent

yields near the fission peaks

Multi-user capability that enables experiments of longer duration

Both points are important to our future programme

Comparison of yields from $4.6 \times 10^{\wedge} 14$ photon-fissions and 10 uA 500 MeV proton induced reactions

Otsaka setup for $\beta-\gamma$ angular correlations with spin-polarized beams also produces important results and extend capabilities

Paul Garrett, ARIEL Science TRIUMF 2023

Three general themes
Studies related to fundamental symmetries, e.g. superallowed Fermi β decay, characterized by high-precision measurements

Structure information on the daughters gathered in the process
Studies related to nuclei far from stability, characterized by weak beams and low rates
Can be compensated somewhat by GRIFFIN's capabilities or long durations
Studies related to nuclei on or near stability, characterized by intense beams and high rates

ARIEL can extend the intense-beam envelope into the photofission yield peak region

My view:

Let other facilities pursue the extremes - we should focus on where we have the superior beam+detection efficiency+duration advantage
Push the level of statistics - low-statistics experiments lead to high-speculation physics; we should aim for definitive experiments

Focus on shape coexistence - why are they interesting?

What do we mean by shape coexistence?
presence of states in the same nucleus within a narrow energy range of two (or more) states that have well defined and distinct properties that can be interpreted in terms of different intrinsic shapes

The shapes we observe, e.g., spherical, prolate, oblate, triaxial

emerge as a consequence of the nucleon-nucleon interaction manifest in a many-body system
The presence of competing shapes due to effects of correlations, especially pairing and quadrupole-quadrupole correlations amongst nucleons, overcoming cost of energy promoting particles into different orbits - even across major shell gaps

Studies of shape coexistence enables us to study effects of correlation energies on deformation (or vice versa) within a system having the same number of protons and neutrons

Deformation is driven by the quadrupole-quadrupole interaction between protons and neutrons - the more valence particles of both types, the greater the deformation (up to a point)
There can be a substantial gain in energy due to correlations between the particles such that the energy cost for promoting particle across shells can be offset
The most common mechanism to generate states with different shapes involves the creation of multiparticlemultihole states

Heyde and Wood, RMP 83, 1467 (2011)

We have a strong programme in shape coexistence studies with β decay

UNIVERSTY

 GUELPHPRL 110, 022504 (2013)

Collective Structure in ${ }^{94} \mathrm{Zr}$ and Subshell Effects in Shape Coexistence
A. Chakraborty, ${ }^{1,2, *}$ E. E. Peters, ${ }^{2}$ B. P. Crider, ${ }^{1}$ C. Andreoiu, ${ }^{3}$ P. C. Bender, ${ }^{4}$ D. S. Cross, ${ }^{3}$ G. A. Demand, ${ }^{5}$ A. B. Garnsworthy, ${ }^{4}$ P. E. Garrett, ${ }^{5}$ G. Hackman, ${ }^{4}$ B. Hadinia, ${ }^{5}$ S. Ketelhut, ${ }^{4}$ Ajay Kumar, ${ }^{1,2,{ }^{4}}$ K. G. Leach, ${ }^{5}$ M. T. McEllistrem, ${ }^{1}$ J. Pore, ${ }^{3}$ F. M. Prados-Estévez, ${ }^{1,2}$ E. T. Rand, ${ }^{5}$ B. Singh, ${ }^{6}$ E. R. Tardiff, ${ }^{4}$ Z.-M. Wang, ${ }^{3,4}$ J. L. Wood, ${ }^{7}$ and S. W. Yates ${ }^{1,2}$

PHYSICAL REVIEW LETTERS 123, 142502 (2019)

Editors' Suggestion Featured in Physics

Multiple Shape Coexistence in ${ }^{110,112} \mathbf{C d}$

P. E. Garrett, ${ }^{1,2}$ T. R. Rodríguez, ${ }^{3}$ A. Diaz Varela, ${ }^{1}$ K. L. Green, ${ }^{1}$ J. Bangay, ${ }^{1}$ A. Finlay, ${ }^{1}$ R. A. E. Austin, ${ }^{4}$ G. C. Ball, ${ }^{5}$ D. S. Bandyopadhyay, V. Bildstein, ${ }^{1}$ S. Colosimo, ${ }^{4}$ D. S. Cross, ${ }^{6}$ G. A. Demand, ${ }^{1}$ P. Finlay, A. B. Garnsworthy, G. F. Grinyer, ${ }^{7}$ G. Hackman, ${ }^{5}$ B. Jigmeddorj, ${ }^{1}$ J. Jolie, ${ }^{8}$ W. D. Kulp, ${ }^{9}$ K. G. Leach, ${ }^{1,{ }^{*}}$ A. C. Morton, ${ }^{5, \dagger}$ J. N. Orce, ${ }^{2}$ C. J. Pearson, ${ }^{5}$ A. A. Phillips, ${ }^{1}$ A. J. Radich, ${ }^{1}$ E. T. Rand, ${ }^{1,+}$ M. A. Schumaker, ${ }^{1}$ C. E. Svensson, ${ }^{1}$ C. Sumithrarachchi, ${ }^{1}$ S. Triambak, ${ }^{2}$ N. Warr, ${ }^{8}$ J. Wong, J. L. Wood, ${ }^{10}$ and S. W. Yates

Absence of Low-Energy Shape Coexistence in ${ }^{80} \mathrm{Ge}$: The Nonobservation of a Proposed Excited $\mathbf{0}_{2}^{+}$Level at 639 keV
F. H. Garcia@, ${ }^{1,{ }^{*}}$ C. Andreoiu, ${ }^{1}$ G. C. Ball, ${ }^{2}$ A. Bell, ${ }^{1}$ A. B. Garnsworthy, ${ }^{2}$ F. Nowacki, ${ }^{3,4}$ C. M. Petrache, ${ }^{5}$ A. Poves, ${ }^{6}$ K. Whitmore, ${ }^{1}$ F. A. Ali, ${ }^{7,8}$ N. Bernier,,${ }^{2,9,7}$ S. S. Bhattacharjee, ${ }^{2,+7}$ M. Bowry, ${ }^{2}$ R. J. Coleman, ${ }^{10}$ I. Dillmann, ${ }^{2,11}$ I. Djianto, A. M. Forney, ${ }^{12}$ M. Gascoine, ${ }^{1}$ G. Hackman, ${ }^{2}$ K. G. Leach, ${ }^{13}$ A. N. Murphy, ${ }^{2}$ C. R. Natzke, ${ }^{14,13}$ B. Olaizola, ${ }^{14}$ K. Ortner E. E. Peters, ${ }^{15}$ M. M. Rajabali, ${ }^{16}$ K. Raymond, ${ }^{1}$ C.E. Svensson, ${ }^{10}$ R. Umashankar, ${ }^{14}$ J. Williams,,${ }^{1.8}$ and D. Yates ${ }^{14,9}$

PHYSICAL REVIEW LETTERS 130, 122502 (2023)

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in ${ }^{74} \mathrm{Zn}$: Suggestion for a Northern Extension of the $N=40$ Island of Inversion
M. Rocchini $\oplus,{ }^{1, *}$ P.E. Garrett \oplus_{6}^{1} M. Zielińska,2 S. M. Lenzi ${ }^{3,4}{ }^{3,4}$ D. D. Dao ${ }^{5},{ }^{5}$ F. Nowacki, ${ }^{5}$ V. Bildstein, ${ }^{1}$ A. D. MacLean, ${ }^{1}$ B. Olaizola@, ${ }^{6,7}$ Z. T. Ahmed, ${ }^{1}$ C. Andreoiu,7 A. Babu, ${ }^{6}$ G. C. Ball, ${ }^{6}$ S. S. Bhattacharjee, ${ }^{6,}$ H. Bidaman, ${ }^{1}$ C. Cheng, ${ }^{6}$ R. Coleman, ${ }^{1}$ I. Dillmann ${ }^{6,8},{ }^{6,8}$ A. B. Garnsworthy, ${ }^{6}$ S. Gillespie, ${ }^{6}$ C. J. Griffine, ${ }^{6}$ G. F. Grinyer®, ${ }^{9}$ G. Hackman, ${ }^{6}$ M. Hanley $\oplus,{ }^{10}$ A. Illana,11, S. Jones, ${ }^{12}$ A. T. Laffoley, ${ }^{1}$ K. G. Leach ${ }^{10},{ }^{10}$ R. S. Lubna, ${ }^{6,8}$ J. McAfee, ${ }^{6,13}$ C. Natzke, ${ }^{6,10}$ S. Pannu, ${ }^{1}$ C. Paxman,6,13 C. Porzio $\oplus_{,}^{6,14,15,| |}$ A. J. Radich, ${ }^{1}$ M. M. Rajabali, ${ }^{16}$ F. Sarazin $\odot,{ }^{10}$ K. Schwarz, ${ }^{6}$ S. Shadrick, ${ }^{10}$ S. Sharma, ${ }^{9}$ J. Suh, ${ }^{9}$ C. E. Svensson, ${ }^{1}$ D. Yates@ ${ }^{,{ }^{, 17}}{ }^{17}$ and T. Zidar ${ }^{1}$

Regions of shape coexistence are now known to be located throughout the nuclear chart, although still mainly
concentrated in the vicinity of closed shell or subshells

There has been much activity recently, including areas suggested to possess multiple shape coexistence - C, $\mathbf{S i} / \mathbf{M g}, \mathbf{N i}, \mathbf{S r} / \mathbf{Z r}, \mathbf{C d}$, $\mathbf{P b} / \mathbf{H g}$

Level energies
Appearance of "unexpected" levels at low energies, e.g., low-lying 0^{+}states Appearance of rotational bands, especially in a spherical nucleus Inferred moments of inertia

Transition rates - vastly different $\boldsymbol{B}(\boldsymbol{E} 2)$ values within bands
Transfer reaction cross sections - large enhancements of cross sections, especially to excited 0^{+}states

Quadrupole moments - measure of charge distribution revealing deformation

Charge radii - directly measuring size of nuclear state
Sets of EM transition matrix elements to form "invariant" quantities
$E 0$ transition strengths - enhancements to $E 0$ transition rates require mixing of states with different deformations

From $\gamma-\gamma$ coincidence measurements with Ge detectors From lifetime measurements with LaBr_{3} detectors

From measurements of conversion electrons using $\mathbf{S i}(\mathbf{L i})$ detectors

Expected spherical shape for the ground states, but instead they are deformed

Recent 3-level mixing calculations suggested that the ${ }^{30} \mathrm{Mg}$ ground state was a mixture of the normalordered $0 \mathrm{p}-0 \mathrm{~h}$ and intruder 2p-2h configurations, with the $\mathrm{O}_{2}{ }^{+}$a mixture of the $\mathbf{2 p - 2 h}$ and $4 p-4 h$ configurations, and the existence of an unknown $\mathbf{0}_{3}{ }^{+}$ state that has the dominant $0 p-0 h$ configuration
$\mathrm{O}_{2}{ }^{+}$state in ${ }^{32} \mathrm{Mg}$ believed to have $t_{1 / 2}$ in range of $10-38 \mathrm{~ns}$

Can reach 10^{10} decays of ${ }^{30} \mathrm{Na}$ in ~ 10 days, 10^{8} decays of ${ }^{32} \mathrm{Na}$ in ~ 3 weeks

Variety of highly deformed structures observed in vicinity of ${ }^{56} \mathrm{Ni}$ by Lund group (e.g., ${ }^{56} \mathrm{Ni}$ by D. Rudolf et al., PRL 82, 3763 (1999))

Garrett, Zielinska, and Clement, PPNP 124, 123931 (2022)

Suggested shapes need to be confirmed through additional

 measurementsS. Leoni et al., PRL 118, 162502 (2017)
N. Mărginean et al., PRL 125, 102502 (2020)

Transitions labelled with $\mathbf{1 0}^{\mathbf{3}} \boldsymbol{\rho}^{\mathbf{2}}$ (E0)

EO data from L. Evitts et al., PRC 99, 024306 (2019)

Key transition $\mathbf{2 1}_{1}{ }^{+} \rightarrow \mathbf{0}_{2}{ }^{+} \sim 9$ W.u. establishes a deformed structure, but was a very weak transition observed in one
 experiment only
An alternative interpretation involves a seniority- 2 structure, with the ground state and $\mathbf{0}_{2}{ }^{+}$state involving a mixture of $\left(\mathbf{g}_{9 / 2}\right)^{2}+\left(\mathbf{p}_{1 / 2}\right)^{2}$ neutrons

To study Ni isotopes, ideally extract Co beams (successfully done at ISOLDE); a Co laser scheme for use with TRILIS is ready
Rates will still be low to reach ${ }^{68} \mathbf{N i}$ - prime example of extended beam time making use of multi-user capability

There have been numerous experimental investigations, but firm evidence for shape coexistence has been lacking, and only recently $\boldsymbol{B}(E 2)$ s determined for deformed states

Measured isotope shifts
${ }^{98} \mathbf{Z r}$ - lifetimes measured in ${ }^{9} \mathrm{Be}$ induced fission of ${ }^{238} \mathrm{U}$, and ${ }^{96} \mathrm{Zr}+{ }^{18} \mathrm{O} 2 p$ transfer reaction

Singh et al. favoured multiple shape coexistence with deformed band structures, Karayonchev et al. favoured a multiphonon-like structure with configuration mixing Knowledge of excited 0^{+}configurations in N $>60 \mathrm{Zr}$ and Sr isotopes very limited

Need to map the low-spin configurations past $\mathrm{N}=\mathbf{6 0}$ transition point
We can reach ${ }^{98} \mathrm{Sr},{ }^{100} \mathrm{Zr}$ with existing beams and achieve high-statistics data sets
ARIEL advantage - the required $\mathbf{S r}, \mathbf{R b}$ beams are close to the lower mass fission peak, enabling us to push well past $N=60$

What is happening with the $\mathbf{0}_{\mathbf{2}}{ }^{+}$state in ${ }^{120} \mathrm{Cd}$? If a recent measurement is correct, it undergoes a significant drop in energy in ${ }^{120} \mathrm{Cd}$.

There are no firm candidates for these configurations beyond ${ }^{120} \mathrm{Cd}$ - the $\mathrm{0}_{2}{ }^{+}$state in ${ }^{122} \mathrm{Cd}$ would match the energy of the $0_{3}{ }^{+}$in ${ }^{120} \mathrm{Cd}$

No candidates for excited 0^{+}states in ${ }^{124} \mathrm{Cd}$ and heavier

Above mid-neutron-shell we do not have a good understanding of the structure

A spectroscopic tour de force, using $\gamma \gamma$ and γe^{-}spectroscopy with recoil decay tagging at Jyvaskyla, observed the weak, in-band $\mathbf{2}_{\mathbf{1}}{ }^{+} \rightarrow \mathbf{0}_{2}{ }^{+}$ transition establishing the $\mathbf{0}_{2}{ }^{+}$ state as the head of the prolate band with $B\left(E 2 ; \mathbf{2 1}_{1}{ }^{+} \mathbf{0}_{2}{ }^{+}\right)=$ 190(80) W.u.

Results indicated small mixing of $\mathbf{0}_{\mathbf{2}}{ }^{+}$ and $\mathrm{O}_{3}{ }^{+}$states

Shape coexistence well established in Hg isotopes

Difference in mean-squared charge radii for $\mathbf{H g}$ show odd-even staggering - large changes in ground state deformation observed

Energy systematics of deformed intruder states display "typical" parabolic dependence on valence neutron number

Information on excited 0^{+}states drops dramatically outside region that can be probed with two-nucleon-transfer reactions
population cross section in many reactions, especially HI fusion evaporation, often extremely small
Is there another configuration as in the $\mathbf{P b}$ isotopes and triple shape coexistence?

There are a wide variety of open nuclear structure questions - ARIEL facility with increased reach, and especially multi-user capability, will enable studies to address these questions

While my focus was on shape-coexistence in even-even, studies of odd-A vital to establish and track single-particle structures

A coordinated approach with experiments at other facilities (e.g., transfer or Coulomb excitation at TIGRESS, measurements at ISOLDE or FRIB, etc.) will reap enormous benefits

Systematics, systematics, systematics,...
It's not stamp collecting, this is often where the physics lies!
... but don't get caught up in doing mediocre experiments on a dozen nuclei instead of outstanding measurements on a few

UNIVERSITY
FGUELPH

Sn isotopes have characteristic parabolic pattern to excitation energies

Garrett, Zielińska, \& Clement, PPNP 124, 103931 (2022)

Appearance of rotational-like bands, with enhanced in-band B(E2) values, that stand out amongst spherical "shell-model" states

Normally, the two-nucleon-transfer is dominated by gs-to-gs transitions - typically > 95\% of $\boldsymbol{L}=0$ strength

Near $Z=50$, two-proton transfer strongly populates the $\mathbf{0}_{\mathbf{2}}{ }^{+}$ state

Garrett, Zielińska, \& Clement, PPNP 124, 103931 (2022)

${ }^{186} \mathrm{~Pb}$ the famous example of multiple-shape coexistence

α-decay similar to α-transfer to gain information on $2 p-2 h$ enhancements

Andreyev et al., Nature 405, 430 (2000).

The "evolution" of the structure of the Cd isotopes

From spherical vibrators....

Nuclear Physics A554 (1993) 1-44 North-Holland
 NUCLEAR

The ${ }^{112} \mathrm{Cd}$ nucleus: A laboratory for the study of collective excitations ${ }^{\star}$
M. Délèze, S. Drissi, J. Jolie, J. Kern and J.P. Vorlet Physics Department, University of Fribourg CH-1700 Fribourg, Switzeriand PHYSICS A
...to deformed with multiple shapes
Proposed
states with
phonon
number
up to $N=6$

Paul Garrett, ARIEL

PHYSICAL REVIEW LETTERS 123, 142502 (2019)

Multiple Shape Coexistence in ${ }^{110,112} \mathbf{C d}$
P. E. Garrett, ${ }^{1,2}$ T. R. Rodríguez, ${ }^{3}$ A. Diaz Varela, ${ }^{1}$ K. L. Green, ${ }^{1}$ J. Bangay, ${ }^{1}$ A. Finlay, ${ }^{1}$ R.A.E. Austin, ${ }^{4}$ G. C. Ball, ${ }^{5}$ D. S. Bandyopadhyay, V. Bildstein, S. Colosimo, D. S. Cross, ${ }^{1}$ G. A. Demand,' P. Finlay, A. B. Garnsworthy, G. F. Grinyer, ${ }^{\text {G }}$ G. Hackman,' B. Jigmeddorj, J. Jolie, ${ }^{8}$ W. D. Kulp, ${ }^{9}$ K. G. Leach, ${ }^{1}$ A. C. Morton, ${ }^{5}$ J. N. Orce, ${ }^{2}$ C. J. Pearson, A. A. Phillips, A. J. Radich, E. T. Rand, ${ }^{1, k}$ M. A. Schumaker, C.E. Svensson, C. Sumithrarachchi,
 four distinct shapes for the lowest four 0^{+} states

Organization of the ${ }^{188} \mathrm{Hg}$ level scheme

Using the extracted branching ratios, $E 2 / M 1$ mixing ratios, absolute or relative $B(E 2)$ values determined

Transitions labelled in absolute $B(E 2)$ in Wu (blue), or relative $B(E 2)$ (black italic), showing clear preference for in-band decays

Calculations by S. Peru
Mean field derived from HFB calculation using Gogny D1M interaction

GCM applied to yield 5dimensional collective Hamiltonian - no restrictions to axial symmetry

States from calculations grouped into bands according to their spectroscopic properties

Weak interaction tests e.g. studies of Fermi superallowed β-decay
${ }^{62}$ Ga decay - beam rate of $6-12 \mathrm{k} / \mathrm{s}$, placement of γ-rays to 1 ppm level permits very sensitive tests related CKM matrix unitarity
A.D. MacLean et al., PRC 102, 054325 (2020)

Nuclear structure investigations e.g. ${ }^{74} \mathrm{Zn}$ and $N=40$ "island of inversion"
M. Rocchini et al., PRL 130, 122502 (2023)

${ }^{9} \mathbf{Z r}$ - high resolution e^{-}scattering yielding $\mathrm{B}\left(\mathrm{E} 2 ; \mathbf{2}_{\mathbf{2}}{ }^{+} \rightarrow \mathbf{0}_{1}{ }^{+}\right.$) and comparisons with MCSM

C. Kremer et al., PRL 117, 172503 (2016)

W. Witt et al., PRC 98, 041302(R) (2018)
${ }^{98} \mathbf{Z r}$ - lifetimes measured in ${ }^{9} \mathrm{Be}$ induced fission of ${ }^{238} \mathrm{U}$, and ${ }^{96} \mathrm{Zr}+{ }^{18} \mathrm{O}$ $2 p$ transfer reaction
${ }^{98} \mathbf{Z r}$ - Coulomb excitation of mass 98 beam placed limit on $B\left(E 2 ; \mathbf{2}_{1}{ }^{+} \rightarrow \mathbf{0}_{1}{ }^{+}\right)$value

