

PERSPECTIVES OF COLLINEAR LASER SPECTROSCOPY

https://www.triumf.ca/laser-spectroscopy

- Usage of pulsed spectroscopy lasers
- Optical population transfer

.to

accumulation

Time

bunch

SNR =234

∑Cts

- Limited to laser transitions > 200 nm
- ~ 50 % efficiency
- Several atomic states are populated
- Background free spectroscopy from metastable states
- New detection methods

NUCLEAR CHARGE RADII

Isotope

Shift

NXy

 $\delta \nu_i^{A,A'} = \nu_i^{A'} - \nu_i^{A} = F_i \, \delta \langle r^2 \rangle^{A,A'} + M_i \, \frac{m'_A - m_A}{m'_A m_A}$

 M_i and F_i from theory or from experiment if ≥ 3 stable isotopes (King plot)

Intensity

NUCLEAR CHARGE RADII

NUCLEAR CHARGE RADII LIGHT NUCLEI

 $R_{\rm c}(^{9}{\rm Be}) = 2.519 \,(12) \,{\rm fm}$ Jansen *et al.*, Nucl. Phys. A 188, 337 (1972)

 $R_{\rm c}(^{6}{\rm Li}) = 2.589(39)\,{\rm fm}$

Nörtershäuser et al., Phys. Rev. C 84, 024307 (2011)

 $\mathbf{r}_{\alpha} = \mathbf{1.678} \, \mathbf{24(83)} \, \mathrm{fm}$

Krauth *et al.*, Nature 589, 527(2021) from μ He⁺ (one-electron system) "all- optical charge radius"

NUCLEAR CHARGE RADII THE CALCIUM - NICKEL REGION

NUCLEAR CHARGE RADII THE STRONTIUM REGION

TECHNISCHE UNIVERSITÄT DARMSTADT

55

60

Charlwood

п

et al.,

Phys.

. Lett. B

674 (1),

₽ Ç

-27, 2009

65

- Evolution of nuclear charge ۲ radii along a chain of isotopes
- Correlation with S_{2n} twoneutron separation energy
- Shows structural effects
- Onset of deformation at N=60
- Is this effect still visible for Mo, Tc, Ru, Rh?
- Observed "change in slope" for N>60

NUCLEAR MOMENTS IN Indium isotopes

A. Vernon et al., Nature 607, 260 (2022)

$$\Delta E_{\rm HFS} = A \cdot \frac{C}{2} + B \cdot \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(I-1)J(2J-1)}$$

C = F(F+1) - I(I+1) - J(J+1)

• Spin *I*, magnetic dipole moment μ and electric quadrupole moment *Q* can be deduced from hyperfine splitting

$$\mu_{\text{meas}} = \mu_{\text{ref}} \frac{A_{\text{meas}}^{hf}}{A_{\text{ref}}^{hf}} \frac{I_{\text{meas}}}{I_{\text{ref}}}$$

• μ probes the single-particle nature of the valence nucleon

TECHNISCHE

UNIVERSITÄT

DARMSTADT

NUCLEAR MOMENTS IN Cadmium isotopes

- Linear trend in magnetic dipole and electrical quadrupole moments for cadmium I=11/2 states
- Large effective charge of the one neutron (Core polarizability for the Z-2 magic nucleus
- Trend continues across 10 isotopes, more than the volume of the occupied h11/2 shell
- Paired neutrons occupy neighbouring states, valence neutron is always in h11/2
- Follows remarkably simple trend in a complex nuclei
- For Sn (magic) the QP moment is not linear the core is not as polarizable

Yordanov et al., Phys. Rev. Lett 110, 192501 (2013)

OCTUPOLE MOMENTS

TECHNISCHE

IMPLICATIONS FOR NUCLEAR EOS

Constrain the slope of the symmetry energy at nuclear saturation density (L) Important to predict the properties of both superheavy nuclei and neutron stars

$L = 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho} \right]_{\rho = \rho_0}$

$$R_{skin}(N,Z) = R_p(N,Z) - R_p(Z,N) \equiv \Delta R_{mirr}(Z,N)$$

- \Rightarrow Favoring a soft neutron matter EOS
- ⇒ Good agreement with new CREX and most theoretical results

INPUT FOR CKM MATRIX

CKM matrix differs $\approx 2 \sigma$ from unitarity

03.08.2023

SPECTROSCOPY OF MOLECULES

R. F. Garcia Ruiz et al., Nature 581, 396 (2020)

HIGHLY CHARGED IONS FROM EBIS

TECHNISCHE UNIVERSITÄT DARMSTADT

THANK YOU FOR YOUR ATTENTION

https://www.triumf.ca/laser-spectroscopy

