Nuclear Magnetic Resonance

- Nuclei with non-zero spin have a magnetic moment
- Provides a subatomic probe of the magnetic field
- In materials, the local field at a nucleus depends on the surrounding electrons
- A local (real space) probe of solids
- Extensive use in chemistry, condensed matter physics, medicine (MRI), ...
- First observed in 1940s,

see Bloch and Purcell Nobel (1952)

TSW, Aug. 3, 2023

βNMR in the Age of ARIEL

W.A. MacFarlane

Chemistry Department University of British Columbia, Vancouver

ISAC-1 Low Energy Area

Titan

βNQR

FR

βNMR

-NMR

EUB!

Osaka

POLARIMETE

Scientific Objectives

Local magnetic probe with nanometre depth resolution (thin films, multilayers, propagation of surface effects into the bulk)

38 nm Film on LSAT

G. Cristiani MPI-FKF Stuttgart

Solid Interfaces

Further Objectives: NMR when NMR is not Possible Isolated ideally dilute defects (including atomic mobility)

Unfavorable isotopes ³¹Mg vs ²⁵Mg

Why is ⁸Li the Best β NMR Nucleus

- lightest βNMR isotope
- easy to polarize
- easy to make a very pure high intensity beam
- can be produced by many different targets
- convenient lifetime 1.2 sec
- effectively single step decay: leaves only α
- significant experience is available
- chemically simple Li⁺

Context: Production of ⁸Li

- 1. 7 Li (n, γ)
- 2. Tilted Foil Reactions
- 3. ⁷Li (d,p)
- 4. ISAC Fragmentation
 - $-p^+ \rightarrow Ta \rightarrow {}^{8}Li \rightarrow Collinear Polarizer \rightarrow Sample$
 - High intensity, highly polarized, keV beams
 - Stopping on the nm scale, e.g. in thin films

Production of ⁸Li at ARIEL

Present Status (BL2A/ISAC)

5 weeks of ⁸Li beamtime per year *for the entire programme*

~1 week per year developing other isotopes like ³¹Mg

A Typical Experiment

Variables: Temperature, Implantation Energy, Magnetic Field, ...

24 - 48 hours for a single sample

A Typical Beam Period

- Typically a block of ~10 days
- 1 day is spent obtaining tunes which are always a compromise between tuning time and measurement time
- Retuning is almost always necessary after maintenance
- Some 5-10 different experiments are scheduled

Compromises

- Very few control measurements
- Tunes are not fully optimized (especially limiting for systematic depth dependence)
- Very little time for technical development
- Very little time to pursue unexpected behaviour

The Bright Future: ARIEL will provide (3×) more weeks of ⁸Li beam

addresses the primary bottleneck in scientific productivity

What This Will Require

- Running the polarizer more
- More systematic semi-automated tuning
- Better diagnostics
- Resources from CMMS, DAQ, Controls, ...
- Investment in end-station capabilities

To make the transition to a real user facility

The End