∂TRIUMF

The BeEST experiment

Annika Lennarz TRIUMF Science Week 2023 August 3rd, 2023

Motivation

- Standard Model is known to be incomplete
- Lepton sector of Standard Model (SM) provides window into Beyond SM physics (confirmed observation of nonzero v mass)
- Sub-MeV "sterile neutrinos" are well motivated, natural extensions to the SM
- Neutrino masses on the keV scale are a promising candidate for so-called "warm" dark matter
- Right-handed, non-interacting with respect to SM forces
- Probe via mixing of active neutrinos

There exist a wide range of masses and couplings from model predictions for heavy beyond Standard Model neutrinos

➔ effective experimental searches for these particles should be <u>model-independent</u> and cover a large area of the allowed parameter space.

One conceptually simple approach is through energy and momentum conservation in nuclear β-decay...

2

The BeEST – Beryllium Electron-capture with Superconducting Tunnel junctions

Superconducting Tunnel Junctions (STJ)

- Cryogenic charge superconducting sensors; Thin devices (~0.5 μm) optimized for **low-energy** radiation
- 2 superconducting electrodes separated by thin insulating tunnel barrier
- Superconducting energy gap ∆ ~meV
 - → High energy resolution (~1eV)
- Short access charge lifetime $\sim \mu s \rightarrow fast count rates$
 - → High rate (10⁴ counts /s /pixel)

Development on Ta, Al, and Nb-based STJ Sensor Arrays

4

Nuclear Recoil Spectroscopy with 7Be

The BeEST - Experimental Concept

6

Energy [eV]

Beam production – ISAC target stations & mass separator

Resonant laser ionization

- Figure 1 selective tool for RIB production
- Selective ionization process + highresolution mass separator
- ➔ suppresses neighbouring isobaric contaminations

- ⁷Be significantly enhanced neutrals to 1⁺ (also small amount of surface ionization)
- But... large amounts of Li surface ionized

IG-LIS: Ion Guide Laser Ion Source

- The ion guide laser ion source (IG-LIS)
 decouples the hot isotope production region from the laser ionization volume
- Isobar suppression of up to 10⁶ has been achieved in some cases

- Ions released from the target are efficiently suppressed by electrostatic potentials
- Neutral atoms can enter the interaction region behind the repeller electrode.
- → Only nuclides ionized by resonant laser ionization within a cold environment behind the electrode are extracted!

"An ion guide laser ion source for isobar-suppressed rare isotope beams" Rev. Sci. Instrum. 85, 033309 (2014) <u>http://dx.doi.org/10.1063/1.4868496</u>

⁷Be implantation at TRIUMF

- Implantation station in exclusion area
- beam spot size ~3mm FWHM
- Bench alignment prior to implantation
- Tuning + monitoring via 7 signal readouts (slits, collimators, sample)
 - ➔ Monitor implantation
- Sample removal & preparation under controlled conditions
- Plans for multi-sample irradiation in progress

Alignment stage

STJ array

9

Sample retrieval & preparation (September 2022)

DRAGON postdocs Sriteja (Teja) Upadhyayula & Louis Wagner preparing beamline opening STJ array with Si collimator (after implantation) mounted on holder on pin connector

Holder + STJ array in ethanol bath

STJ array without Si collimator (removal after ethanol rinse with carbon-tip tweezers)

Results from first nuclear recoil experiments using STJs – Phase II exclusion limits

The BeEST group's initial experiment placed significant <u>new limits</u> on the existence of sterile neutrinos in the mass range of 100-800 keV (with single pixel)

Direct measurement of the ⁷Be L/K capture ratio in Ta-based superconducting tunnel junctions

S. Fretwell,¹ K.G. Leach,¹,^{*} C. Bray,¹ G.B. Kim,² J. Dilling,³ A. Lennarz,³ X. Mougeot,⁴ F. Ponce,^{5, 2} C. Ruiz,³ J. Stackhouse,¹ and S. Friedrich²

¹Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
²Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
³TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
⁴CEA, LIST, Laboratoire National Henri Becquerel, CEA-Saclay 91191 Gif-sur-Yvette Cedex, France
⁵Department of Physics, Stanford University, Stanford, CA 94305, USA
(Dated: July 16, 2020)

Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of ⁷Be in Superconducting Quantum Sensors 11

S. Friedrich,¹,^{*} G.B. Kim,¹ C. Bray,² R. Cantor,³ J. Dilling,⁴ S. Fretwell,² J.A. Hall,³ A. Lennarz,^{4,5} V. Lordi,¹ P. Machule,⁴ D. McKeen,⁴ X. Mougeot,⁶ F. Ponce,^{7,1} C. Ruiz,⁴ A. Samanta,¹ W.K. Warburton,⁸ and K.G. Leach²,[†]

¹Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 ²Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
 ³STAR Cryoelectonics LLC, Santa Fe, NM 87508, USA
 ⁴TRIUMF, Vancouver, BC V6T 2A3, Canada
 ⁵Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
 ⁶Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120, Palaiseau, France
 ⁷Department of Physics, Stanford University, Stanford, CA 94305, USA
 ⁸XIA LLC, Hayward, CA 94544, USA
 (Dated: October 20, 2020)

Phase III data: Implantation 2022 – First run with significant ⁷Li suppression!

Date	25 th Sep, 2022	22 nd Nov, 2022	
Target + Source	UC + IG-LIS	Graphite + RILIS	
Mode (Trans/Supp)	Suppression	N/A	
⁷ Be intensity (pps)	6.2 x 10 ⁶ (x44 reduction c.f. UC + RILIS)	Not measurable. No laser on/off difference.	
⁷ Li intensity (pps)	8.1 x 10 ⁵ (x4,000 Li suppression)	6 x 10 ¹¹	
Li/Be	1:7	300:1 🔁	
Implant Time	~24 hrs	~10 min.	
Implant energy	Ta (30 kV)	Nb (20 kV)	

 Plan was to at least run again in transmission mode with better beam alignment and an "okay" Li:Be ratio

- Successful suppression mode was attributed to a better RF-power transmission line into this target station, as this was the first time IG-LIS was used here.
- RF cabling and generator were exchanged.
- However, suppression is still difficult compared to heavier masses. (Jens Lassen – Laser Applications Group)

Recent Highlights – Phase III Data Run (Completed January 2023)

- 49 days of decay data from 20 pixels (~50 Bq/pixel)
 - Continuous "triggerless" DAQ (16 pixels)
- Offline processing of full signals now possible
- 90 TB of data taken!
 - 6% of data have been released (rest is blinded)
 - Full waveform analysis and inter-pixel correlation
 - 100x statistics over Phase-II data set
- \rightarrow Improved systematics from improved spectral info

 γ -recoil spectroscopy

- Used Nal detectors for γ-coincidence measurement (February 2023)
- Gamma-coincidence technique allows to separate just the excited state events
- ➔ Understand gamma-background & line-shape for excited state events
- Analysis ongoing

Recoil Spectrum from Phase III data

Projections for next phases of the BeEST

How will the BeEST benefit from ARIEL?

Phases III & IV require detailed understanding of STJ response & material

effects to reach projected limits

- Requires data taking with many iterations of STJ arrays (variations in material, thickness, pixel sizes/numbers (scaling up from hundreds to thousands))
- Requires reliable implantation with pure ⁷Be beams
- Requires long run times of multiple weeks at a time (currently not feasible)
- Ideally operate outside of exclusion area

How will the BeEST benefit from ARIEL?

Concept:

 Use multi-target chamber with ARIEL beams cleaned through High Resolution Separator (~1:20,000) (or 100% ⁷Li suppression with IG-LIS)

Requirements:

- Need ARIEL to come online
- AETE: predicted in-target production ~5e+10pps (based on 100kW)
- \rightarrow ~1e9 pps through the HRS & **No Lithium**.
- Earliest tests 2026/27
- APTW & BL4N (earliest 2027)

Fully Explore the Extensive Nuclear Toolbox with STJs

SALER – Superconducting Array for Low-Energy Radiation

Extended application for STJs for short lived rare isotopes $T_{1/2} > 0.1$ s

SALER

Before Alignment After Alignment

Mounted 36-Pixel Nb STJ Array

Couple active sensor array to beamlines at RIB facilities (FRIB (online commissioning in 2025), TRIUMF-ISAC (LOI), CERN-Isolde)

20

- In-situ measurements with ADR coupled to beamline
- ARIEL would enable efficient commissioning & detector development
- Beams from CANREB-EBIS
- Science cases beyond LOI to be identified

Summary

- Implanting rare isotope beams into superconducting tunnel junctions is a powerful new tool to perform sub-keV nuclear decay spectroscopy
- Using STJs, we are able to measure radiation from ~2.5 eV to 1 keV with ~ meV precision at decay rates of up to 10 kBq
- The Beryllium Electron capture in Superconducting Tunnel junctions (BeEST) experiment is a new search for beyond standard model physics using precision measurements of the EC decay of ⁷Be
- The BeEST has already obtained the best laboratory mixing limits in the range between 100–800 keV, planning to improve these limits by 3 orders of magnitude in the next 4 to 5 years → ARIEL needed to achieve goals!
- BeEST concept has been extended to develop the superconducting array for low-energy radiation (SALER) to perform nuclear recoil spectroscopy using short-lived RIBs on-line (proposals FRIB & TRIUMF) → expand number of systems to study to search for BSM physics!

The BeEST - collaboration

Collaboration meeting at LLNL in April 2023

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

Back-up slides

Atomic Recoils Following Nuclear β -decay

- β-decay is powerful probe to search for BSM physics
- Pure energy-to-matter conversion
- Complex but well understood systems (~3500)

β -decay usually characterized by measuring:

- Electrons (β^{-} , atomic Auger, CE, etc.)
- Positrons (β⁺, IPC)
- Photons (γ-rays, Bremsstrahlung, X-rays)
- Energy and momentum conserving system
- The <u>daughter recoil</u> is entangled with the other final state products!
- Contains a lot of unique but difficult to access information.
- Access to recoil energy allows access to information

For several cases, the recoil can be used as unique probe for BSM physics

MeV/keV

scale!

 10^{6}

Background

Because we're measuring an entire spectrum being shifted, this removes danger of false identification of random peak!

Sterile neutrino will add a similar spectrum with:

100

120

140

160

180

- 1) Shifted recoil energy $\Delta E(m_4)$
- 2) Reduced amplitude ($A \propto |U_{e4}|^2$)

Be-7 EC spectrum with Heavy Sterile Neutrinos

Neutrino mass and Li-7 recoil energy

 $E_r = (Q^2 - m_4^2)/2(Q + M_{7Li})$

 ΔE

Material effects

Systematics Studies

- Improvements in theoretical understanding of the EC spectrum atomic/nuclear effects
- Study on materials effect on-going
- Simulation on background helps reducing systematics

Detector characterization

- Energy resolution as low as 1.3 eV FWHM @ 100 eV
- Improved background rejection

TEM scans, atom by atom mapping

Hybridization

Atomic effects (Shake-up & Shake-off)

TRIUMF – A High-Power Target Laboratory, based on world's largest cyclotron

TRIUMF (since 1968)
Meson facility (π , & thus μ beams)29**520 MeV H**- cyclotron200 kW protons
on average 3000 proton beam hours annually

ISAC (since 1995) 2 target stations 500 MeV, 50 kW proton beam Post-Acc. RIB: 2.1 MeV/u & 15 MeV/u

ARIEL (since 2010)

2 target stations under construction **AETE (electron target)**

- 35 MeV, 100 kW electron beam
- Construction to be finished by 2025
- First beam to yield station anticipated in 2026
- **APTW** (proton target)
 - 500 MeV, 50 kW proton beam
 - Construction to be finished by 2026
 - First beam to yield station anticipated in 2027

Previous implantations - Overview

Sched.	Shifts	Target/Source	⁷ Be Rates [pps] (Be:Li)	Notes (STJ type, implant energy etc)	30	
135 (2018)	2 (discretionary)	UC _x + RILIS	~7.4 x 10 ⁸ (26/1)	Proof of principle with Ta chip (26 kV)	First	
136 (2019)	1 (discretionary)	UC _x + RILIS	~2 x 10 ⁸ (74/1)	Ta chip (25 kV), 30min implantation	limits	
139 (2020)	5	Graphite + RILIS	~1 x 10 ⁹ (1:100)	Two Ta arrays (HV bias – chips damaged)	data set	
140 (2021)	6	UC + RILIS	7 x 10 ⁷ (1:120)	2 Ta arrays, 1 Nb array, and 1 Al array. Ta arrays were damaged (likely in transit). Dose in Nb and Al chips was low. Some Al chips still produced usable data for test purposes.		
141 (2021)	3	UC + IGLIS (transmission mode)	5 x 10 ⁷ (1:86) 1.5 x 10 ⁸ (1:13)	1 Nb array – STJ failed. Cause unknown. 1 Al array – First Al physics data tests		
142 (2022)	3	UC + IGLIS (suppression mode)	6.2 x 10 ⁶ (7:1)	Ta (30 keV). Phase-III physics implant	analysis	
143 (2022)	<1	Graphite + RILIS	~1 x 10 ⁸ (1:300)	Nb test chip – low activity on sample		
140	12	OLIS	~1 x 10 ¹¹ at 30 keV	Stable ⁷ Li beam implantation at GRIFFIN, 12 samples		

24 new shifts requested and approved by EEC with high priority

Data processing

 Past limit-setting results from the experiment used a list-mode ADC with a hardware trapezoidal filter to trigger the pulses from the STJ array.

31

 To improve our signal analysis capabilities, we have constructed a continuously sampling data acquisition system which allows for advanced offline characterization of events using pulse shape and timing information.

- New: Continuous "triggerless" I PXIe DAQ (16 pixels)
- Old system: List-mode XIA system (4 pixels)
 - Signal readout with specialised currentsensitive preamp from XIA LLC
 - Processed with analog spec-amp (Ortec 627, shaping time 10 µs)
 - Captured with 2-channel MCA (Ortec Aspec927)
- 1 Ortec MCA channel for monitoring

Energy calibration

- For energy calibration, the STJs were simultaneously exposed to 3.49965(15) eV photons from a pulsed Nd:YVO4 laser (355nm)
- Triggered at a rate of 100 Hz
- The laser intensity was adjusted such that multi-photon absorption provided a comb of peaks over the energy range from 20-120 eV.
- Since the STJ absorbs an integer number of photons per pulse, the spectrum consists of a comb of equidistant peaks with a Poissonian distribution
- The calibration spectrum was recorded in coincidence with the laser trigger and the 7Li recoil spectrum in anticoincidence.

Friedrich et al., *Journal of Low Temperature Physics* **volume 200**, pages 200–205 (2020)

7Li recoil spectrum

The BeEST in context

