

Abstract

TRIUMF has two purpose-built coaxial test cavities, a Half Wave Resonator (HWR) and Quarter Wave Resonator (QWR). These TEM-mode cavities are used to characterize the effects of different surface treatments, cool-down speeds, and applied magnetic filed orientations. Results from cooldowns to superconducting temperatures performed on the QWR with different cool-down characteristics are presented here. These results are informed by COMSOL simulations.

Coaxial Cavities

TRIUMF has a Half Wave Resonator (HWR) and Quarter wave Resonator (QWR). Multiple resonant modes can be tested after one cool-down. The cavities are made of bulk niobium.

Photo of Coaxial Cavities: HWR (left) and QWR (right)

Cavity Cool-down Simulations

Cool-downs of the HWR (left) and QWR (right) are simulated using COMSOL Multiphysics ®.

HWR simulation. The cavity is cooled from bottom to top.

top to bottom.

Conclusion

Flux Trapping in Coaxial Superconducting Radiofrequency Cavities

Cut outs of the HWR (left) and QWR (right). These images were generated using COMSOL Multiphysics ®.

cooled from bottom to top, followed by the inner conductor which is cooled from

Helmholtz Coils

The Helmholtz coils produce a very uniform magnetic fields in all three spatial dimensions that surrounds a cavity during a cool-down.

R. Gregory¹, T. Junginger¹, P. Kolb, R. Laxdal¹, M. McMullin¹, Z. Yao TRIUMF, Vancouver, Canada ¹Also at University of Victoria, Victoria, Canada

Helmholtz Coils

RF Magnetic Field

Fluxgate probes measure the magnetic fields in three orthogonal spatial dimensions during and after the cool-downs. The rf magnetic field distributions and location of the fluxgate probe is shown below.

778 MHz

The fast and slow cool-600 downs with a **[**0 vertical ے 400 کے applied field lead to similar levels of QWR Vertical surface Field Cooled resistance. 20 50 150 200 100 Time [s] For the 800 horizontal field cooled results, the fast cool-___ 600 · — COMSOL QWR down leads to — Fast Cool-down Horizonta \mathbf{P}_{S} lower surface — Slow Cool-down Field resistance and Cooled higher Q 200 values. 100 Time [s] 200 50 150 20

The fast cool-down with a horizontal applied field yields near complete flux expulsion.

