

Recent Activities of ANPhA (Asian Nuclear Physics Association)

Byungsik Hong (Korea University)
Chair of ANPhA

IUPAP WG9 Annual General Meeting 2023 Palais de Papes, Avignon, France, June 3, 2023

https://asiannuclearphysic.wixsite.com/anpha

Short history

- Three preparatory meetings in Tokyo (2008), Seoul (2009), and Beijing (2009)
- Establishment of the organization in Beijing, July 18, 2009
- Original member countries/region (8)
 - Australia, China, India, Japan, Korea, Mongolia, Taiwan, and Vietnam
- Objectives
 - To strengthen "Collaboration" among Asian nuclear research scientists through the promotion of nuclear physics and its transdisciplinary and applications
 - To promote "Education" in Asian nuclear science through mutual exchange and coordination
 - To *coordinate* among Asian nuclear scientists by actively *utilizing existing research facilities*
 - To discuss *future planning* of nuclear science facilities and instrumentation in Asia

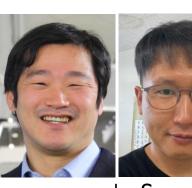
- Regular activities
 - Annual board meeting together with either ANPhA Symposium or Conference

- During the pandemic ANPhA continued the online meetings and ANPhA Symposia
- Return to the in-person meeting in 2023

	Date	Location	Symposium	Comments
1 st	Jul. 18, 2009	Beijing, China		
2 nd	Jan. 17, 2010	Tokai, Japan	1st ANPhA Symposium	
3 rd	Oct. 02, 2010	Seoul, Korea	2 nd ANPhA Symposium	
4 th	Apr. 30, 2011	Lanzhou, China	3 rd ANPhA Symposium	
5 th	Nov. 27, 2011	Hanoi, Vietnam	ISPUN2011	
6 th	Aug. 04, 2012	Adelaide, Australia	4 th ANPhA Symposium	
7 th	Apr. 27, 2013	Taipei, Taiwan	5 th ANPhA Symposium	
8 th	Feb. 19, 2014	Kolkata, India	6 th ANPhA Symposium	
9 th	Nov. 07, 2014	Ho Chi Minh, Vietnam	ISPUN2014	
10 th	Oct. 24, 2015	Gyeongju, Korea	7 th ANPhA Symposium	
11 th	Nov 24, 2016	Sendai, Japan	8 th ANPhA Symposium	
12 th	Sep. 24, 2017	Halong City, Vietnam	ISPUN2017	
13 th	Sep. 13, 2018	Beijing, China	9 th ANPhA Symposium	
14 th	Jun. 29, 2019	Jeju Island, Korea	10 th ANPhA Symposium	
15 th	Dec. 11, 2020	Hong Kong, China	11 th ANPhA Symposium	Online
16 th	Dec. 03, 2021	Beijing, China	12 th ANPhA Symposium	Online
17 th	Nov. 17, 2022	Beijing, China	13 th ANPhA Symposium	Online

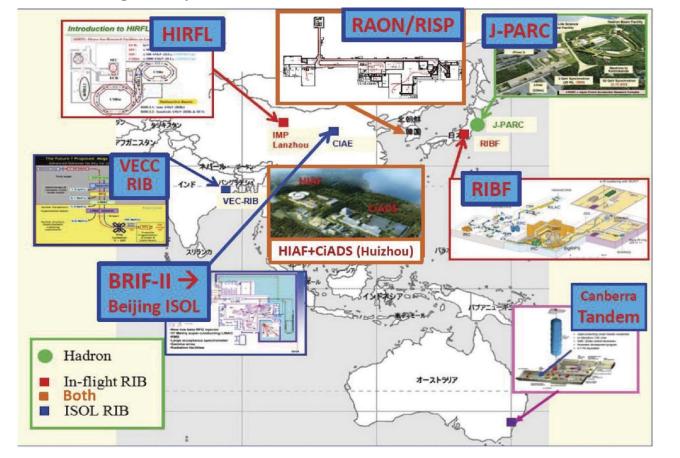
- Establishment of the Division of Nuclear Physics (DNP) in Association of Asia Pacific Physical Societies (AAPPS) in the 33rd Council meeting in Brisbane, Australia on Dec. 4, 2016.
- Past Chairs
 - ↓ Hideyuki Sakai, Japan (2009-2011)

 - ↓ Dong-Pil Min, Korea (2014-2016)
 - ↓ Kazuhiro Tanaka, Japan (2017-2019)


■ Current management (2023-2025)

- Chair: Byungsik Hong (Korea)
- Vice Chairs: Anthony Thomas (Australia),
 Guoqing Xiao (China), Tomohiro Uesaka (Japan)
- Secretary to Chair: Yongsun Kim (Korea)

rs | Secretary


Board members (12 member countries/region)

- Australia: Anthony Thomas (Univ. of Adelaide)
- China: Furong Xu (Peking Univ.), Guoqing Xiao (IMP), Yugang Ma (Fudan Univ.), Bing Guo (CIAE)
- India: Avinash C. Pandey (IUAC), Sumit Som (VECC), Vandana Nanal (TIFR)
- Japan: Kazuhiro Tanaka (KEK), Atsushi Hosaka (RCNP), Hirokazu Tamura (Tohoku Univ.), Tomohiro Uesaka (RIKEN)
- Korea: Byungsik Hong (Korea Univ.), Jin-Hee Yoon (Inha Univ.), Eun-Joo Kim (Jeonbuk Nat. Univ.)
- Taiwan: Wen-Chen Chang (Academia Sinica)
- Vietnam: Phan Viet Cuong (VINAGAMMA)
- Myanmar: Nyein Wink Lwin (Univ. of Mandalay)
- Kazakhstan: Kairat A. Kuterbekov (Eurasian Nat. Univ.)
- Hong Kong (China): Jenny Hui Ching Lee
- Mongolia: To be determined
- The Philippines: Denny Lane Sombillo (Univ. of the Philippines)

White paper of ANPhA

- Catalog of Accelerator Facilities in Asia-Pacific region
- https://kds.kek.jp/indico/category/1706/
- Existing and planned accelerators for NP in Asia

Nuclear Physics News (2020)

feature article

Ten Years of the Asian Nuclear Physics Association (ANPhA) and Major Accelerator Facilities for Nuclear Physics in the Asia Pacific Region

Anthony W. Thomas^{1,6}, Andrew E. Stuchbery^{1,7}, Weiping Liu^{2,8}, Guoqing Xiao^{2,9}, Yugang Ma^{2,10}, Jun Cao^{2,11}, Avinash C. Pandey^{3,12}, B. K. Nayak^{3,13}, Sumit Som^{3,14}, Kazuhiro Tanaka^{4,15}, Tohru Motobayashi^{4,16}, Hirokazu Tamura^{4,17}, Atsushi Hosaka^{4,18} and Byungsik Hong^{5,19}

- ¹ANPhA, Australia
- ²ANPhA, China
- ³ANPhA, India
- ⁴ANPhA, Japan
- ⁵ANPhA, Korea
- ⁶University of Adelaide, ANPhA Vice Chair, Australia
- ⁷Australian National University, Australia
- ⁸CIAE, ANPhA Chair, China
- ⁹IMP-CAS, ANPhA Board Member, China
- ¹⁰Fudan University, ANPhA Board Member, China
- 11 IHEP. China
- 12 IUAC. ANPhA Board Member, India
- ¹³BARC-TIFR, ANPhA Board Member, India
- 14VECC, ANPhA Board Member, India
- 15KEK, ANPhA Board Member, Japan
- 16RIKEN, ANPhA Vice Chair, Japan
- ¹⁷Tohoku University/JAEA, ANPhA Board Member, Japan
- ¹⁸Osaka University/JAEA, ANPhA Board Member, Japan
- 19 Korea University, ANPhA Vice Chair, Korea

1. Introduction

Establishment of ANPhA

On 18 July 2009, the Asian Nuclear Physics Association (ANPhA) [1] was officially launched in Beijing by representatives from China, Korea, Japan, and Vietnam.

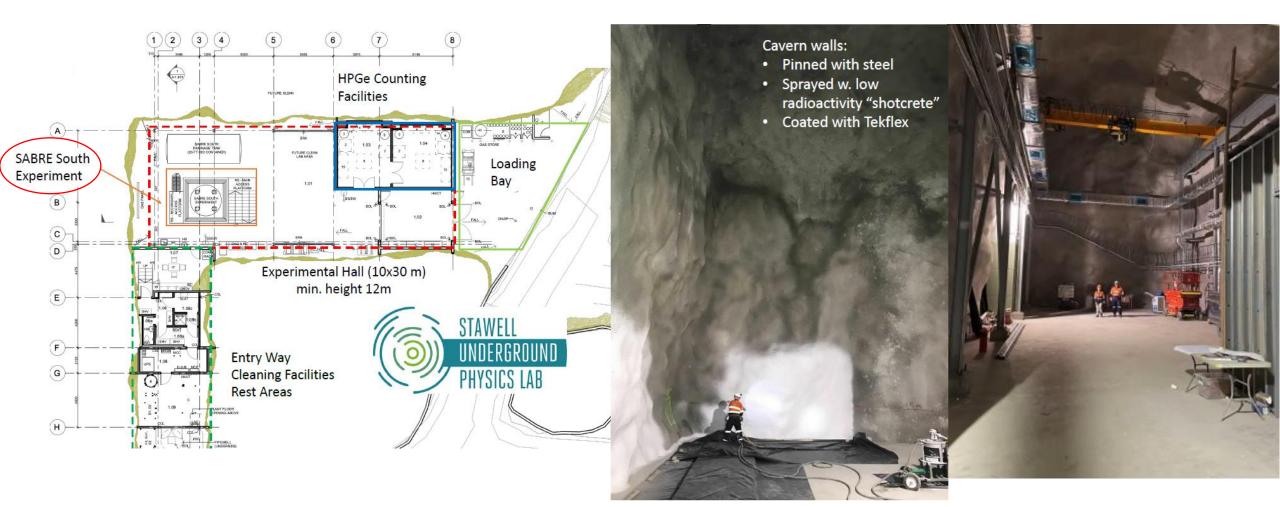
The main objectives of ANPhA are clearly indicated in its bylaws:

- to strengthen collaboration among the Asian communities in nuclear research through the promotion of basic nuclear physics and its applications,
- to promote education in the Asian nuclear science communities through mutual exchange and coordination of resources.

- to encourage coordination among the Asian nuclear scientists for active utilization of existing research facilities, and
- to discuss future planning of the nuclear science facilities and instrumentation among member countries.

According to the brief summary report prepared by Prof. Hideyuki Sakai, which appeared in *Nuclear Physics News* [2], entitled "Establishment of the Asian Nuclear Physics Association (ANPhA)," the story of the first days of ANPhA was as follows:

... Initially, the need of an organization like ANPhA was raised from time to time at the meetings of the Commission on Nuclear Physics (C12) of the International Union of Pure and Applied Physics (IUPAP) as well as at its



News from Australia

from Anthony W. Thomas

- Stawell Underground Physics Laboratory (SUPL)
 - Construction of a new underground Lab. completed in 2022

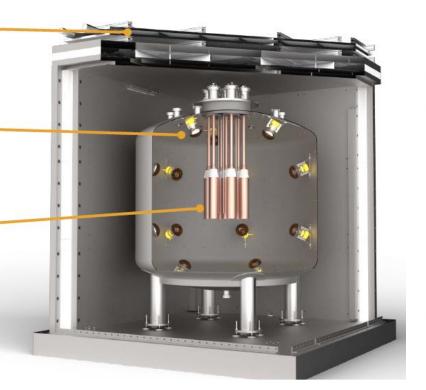
News from Australia

■ SABRE South Collaboration

- A new dark matter searching group (46 members across 5 institutions)
- To measure the model independent modulation signal for dark matter caused by relative motion of the Earth through galactic halo
- Expect to reach 5σ discovery sensitivity to a DAMA-like signal within two years

ToF Muon System

9.6 m² x 5 cm EJ200 R13089 PMT x 16 @ 3.2 GS/s


12k litres Linear Alkyl Benzene + PPO & Bis-MSB Stainless steel, non-thoriated welds, lumirror coating Oil-proof base R5912 PMT x 18 @ 500 MS/s

DM Target Detector

NaI(TI) Crystals

R11065 low radioactivity PMT x ~14 @ 500 MS/s

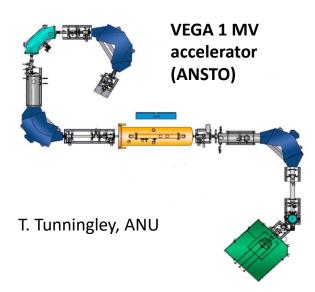
Key requirement to understand modulation in background contributions - requires particle ID. e.g. $\mu/\gamma/n$.

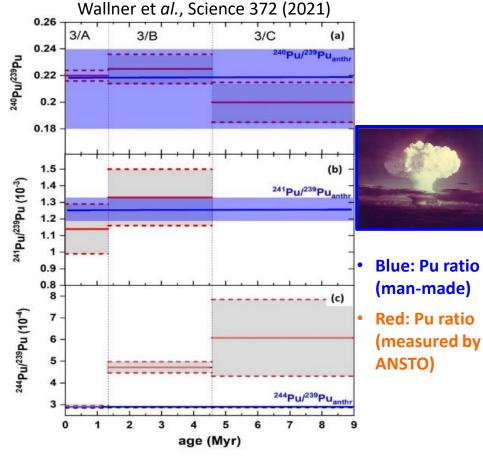
17,000 litres LAB scintillator base from Nanjing via JUNO/IHEP.

JUNO LS properties [6]

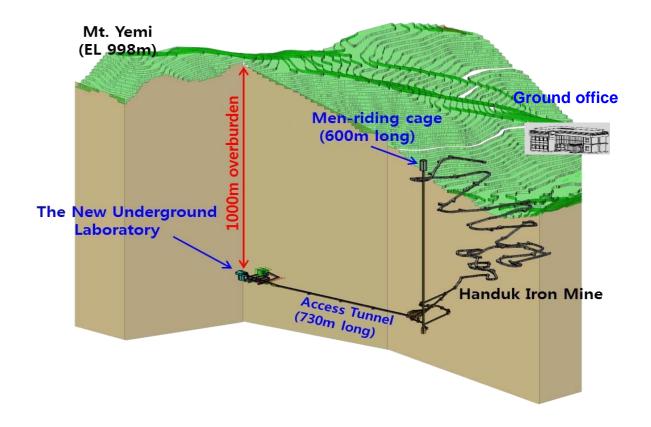
- Photon attenuation > 20 m
- 238U/232Th/40K <10-17 g/g

News from Australia


WEAP WEAP

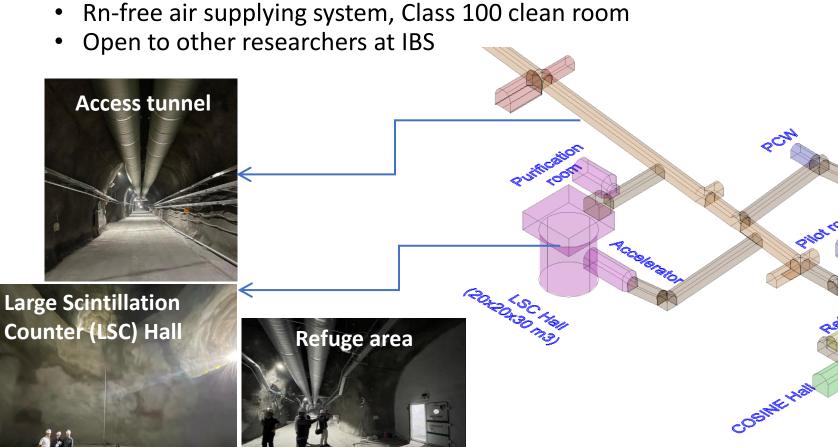

Look at deep sea Fe/Mn crusts for extraterrestrial ⁶⁰Fe and ²⁴⁴Pu

Lead composite image credit:
Pinwheel-Shaped Galaxy by NASA,
ESA, The Hubble Heritage Team,
(STScI/AURA) and A. Riess (STScI) an

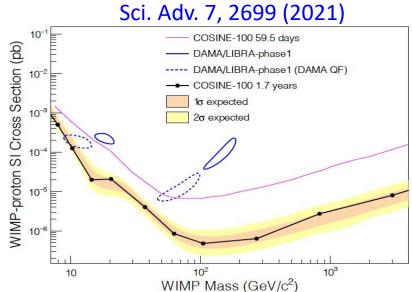


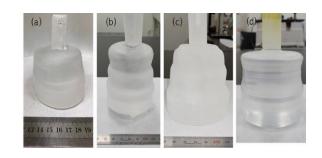
- Found ⁶⁰Fe & ²⁴⁴Pu in the crust
- Both are coming from space (extraterrestrial)
- 2 or more supernovae events within ~10 Myr
- Exact origin of ²⁴⁴Pu remains unclear.
- 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae

- Yemilab: a new underground Lab.
 - Y2L (700 m deep) constructed in 2003 to house KIMS dark matter search experiment
 - Yemilab (1000 m deep) constructed in 2022
 - Two access ways: ramp-way and men-riding cage

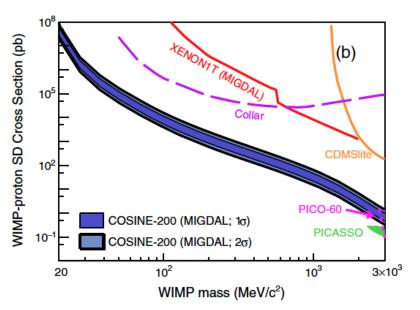

from Yeoungduk Kim

- Experimental area of Yemilab
 - Operated by Center for Underground Physics (CUP) of IBS
 - Lab. space > 3000 m², 2.5 MW electricity

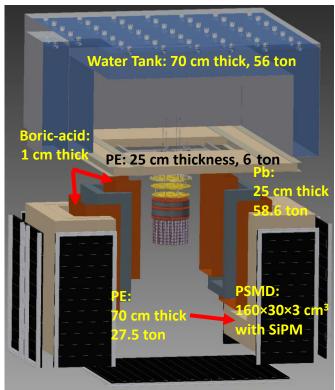


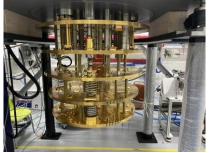

Dark matter search

- COSINE-100 experiment @ Y2L
 - Collaboration : Yale, CUP, Sheffield, San Paulo
 - DAMA/LIBRA annual modulation of standard halo model is rejected.



- COSINE-200 experiment @ Yemilab
 - Ultra-low background NaI crystals developed
 - Aims a world best limit for low-mass WIMPproton spin-dependent interaction
 - Expect to begin in 2025

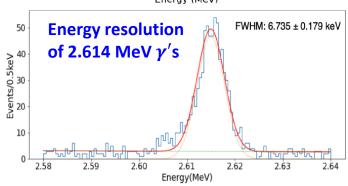



Neutrinoless double beta decay

- AMORE-II experiment @ Yemilab
 - 100 kg of ¹⁰⁰Mo for 5 years to reach $T_{1/2}^{0\nu} > 4.5 \times 10^{26}$ years Li₂¹⁰⁰MoO₄ crystals in 5 and 6 cm cylinder (~400 crystals)
 - Both phonons and photons measured by MMC+SQUID sensors DR inside shielding of 25cm Pb + 70cm of PE and water
 - Muon veto detectors installed

• 90-crystal run from 2023/full scale (100 kg of ¹⁰⁰Mo) run from early 2025

Dilution refrigerator (DR)



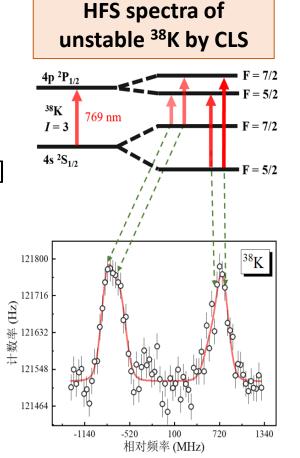
Installed muon detectors

Copper holder Si Wa fer (Light detector) Sensor holder **Stabilization Heater** Reflector

Recent progress in detector R&D JINST 17, p07034(2022) α **Detector tested at ground** Energy (MeV)

from Bing Guo

Beijing Radioactive Ion beam Facility (BRIF) @ CIAE





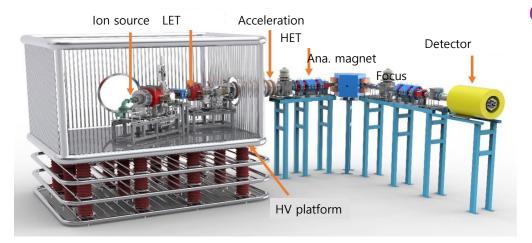
Beijing Radioactive Ion Beam (BRIF) @ CIAE

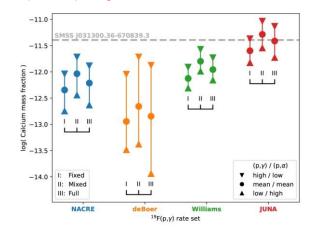
- Production of fission fragments (Rb, Sr, etc.) RIBs
- Number of RIB types: $24 \rightarrow 55$
- The shortest half-life of RIB with ISOL: $0.45 \text{ sec} \rightarrow 0.17 \text{ sec}$
- Beam intensity: $10^3 \sim 10^{10}$ pps
- First RIB Expt.: $3 \beta \gamma \alpha$ exotic decays in ²⁰Na [PRC103, L011301 (2021)]
- First Expt. with the post-accelerated Na beams on ⁴⁰Ca target [NST32, 53 (2021)]
- First CLS Expt. [NIMA1032, 166622 (2022)]



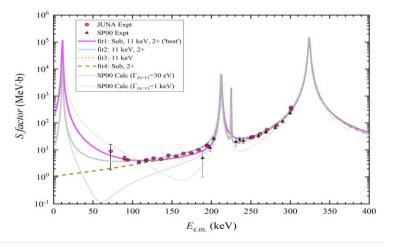
China Jinping Underground Laboratory (CJPL)-II

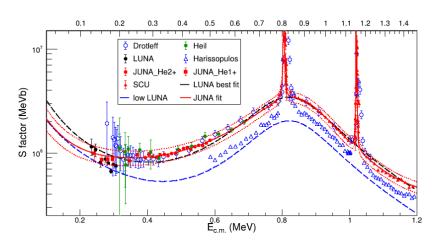
HPGe CDEX+



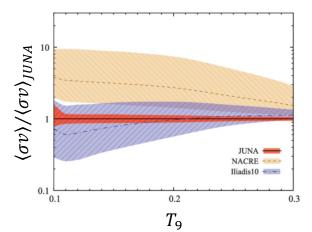


Highlights of JUNA for nuclear astrophysics


W.P. Liu, et al., Sci. China 59, 5785 (2016)


(News & Views) 19 F(p, γ) 20 Ne: L.Y. Zhang, J.J. He*, W.P. Liu*, et al., Nature 610, 656 (2022) Explain Ca in the oldest star!

(Editor suggestions) 19 F(p, $\alpha\gamma$) 16 O: L.Y. Zhang, et al., PRL 127, 152702 (2021)


¹³C(α,n)¹⁶O: B.S. Gao, et al., PRL 129(2022)132701

(Cover results) ²⁵Mg(p,γ)²⁶Al: J. Su, et al., Sci. Bull. 67, 125 (2022)

¹⁸O(α,γ)²²Ne, L.H. Wang, W.P. Liu*, PRL 130, 092701 (2023)

WPAP WG9

from Wenlong Zhan

Heavy Ion Accelerator Facility (HIAF): 1st Phase

 E_{B1} : 0.8 AGeV, 3×10^{10} ppp $^{238}U^{35+}$ 1.75 AGeV, 7.5×10^{10} ppp $^{78}Kr^{19+}$ 2.6~3.0 AGeV, 1.0×10^{11} ppp $^{16}O^{6+}$

External target station
High Energy Density Physics
(HEDP)
Nuclear matter study - CEE
Hypernuclear physics
High energy irradiation

BRing1: Booster Ring 1 Circumference: 600 m Rigidity: 34 → 40 Tm

Large acceptance (200/100)
Two planes painting injection
Fast ramping rate (3-10 Hz)

After optimization, beam intensity X~10 beam energy X > 30% Low energy nuclear **Huizhou City of** structure terminal **Guangdong Province**

HIAF-I: 2018-2025

Budget: 1.6+1.2B CNY

SRing: Spectrometer Ring

Circumference: 273 m Rigidity: $15 \rightarrow 20$ Tm

Electron/Stochastic cooling

Precise measurement by two TOF

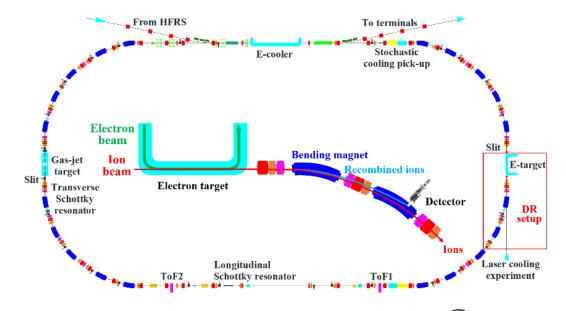
detectors, four operation modes

SECRAL and FECR 28-45GHz,1.0emA (U³⁵⁺)

iLinac: Superconducting linac

Length: 100 m

Energy: $17 \sim 22 \text{ MeV/u } (U^{35+\sim 46+})$



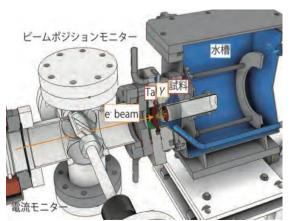
Heavy Ion Accelerator Facility (HIAF)


- Beam physics study
 - Highest pulse beam
- ECR ion source
 - 45GHz 12T Nb₃Sn SECRIS under assembling
- Key technology development for HI synchrotron
 - 0.3 mm chamber for high vacuum
 - High-gradient magnetic alloy RF for fast injection, etc.
 - Active power source for high repetition rate
 - Results
 - Beam Intensity → X100
 - Repetition rate $\rightarrow \sim 10 \text{ Hz}$
 - Assembly time: years → months
 - Tuning: months → days
- HFRS for in-flight fragmentation of projectiles
- High Accuracy Spectrometer at SRing
- CEE R&D and fabrications

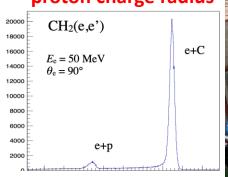
Laboratory	Facility	Desgin Inten.	Heavy Ion
BNL	AGS Booster		Au ³²⁺
JINR	NICA Booster	4×10 ⁹	Au ³²⁺
GSI	SIS18	1.0×10 ¹¹	U ²⁸⁺
FAIR	SIS100	4.0×10 ¹¹	U ²⁸⁺
IMP	HIAF-SRing	5/20×10 ¹¹	U/Bi ⁽³⁵⁻⁴⁵⁾⁺
IMP	HIAF-BRing-SRing	1/5×10 ¹² 2/12×10 ¹²	U/Bi ⁽³⁵⁻⁴⁵⁾⁺

Research Center for Electron Photon Science (ELPH)

High-intensity

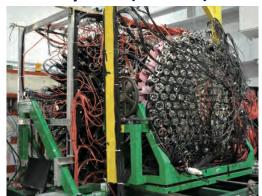

electron beam

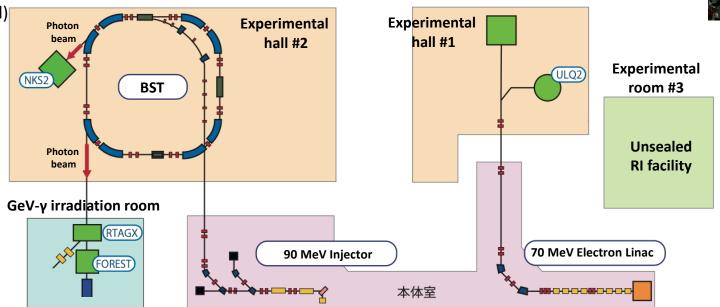
from Kazuhiro Tanaka


Neutral Kaon Spectrometer II

irradiation station Wide variety of high-radiation RI production

Toward precise measurement of proton charge radius

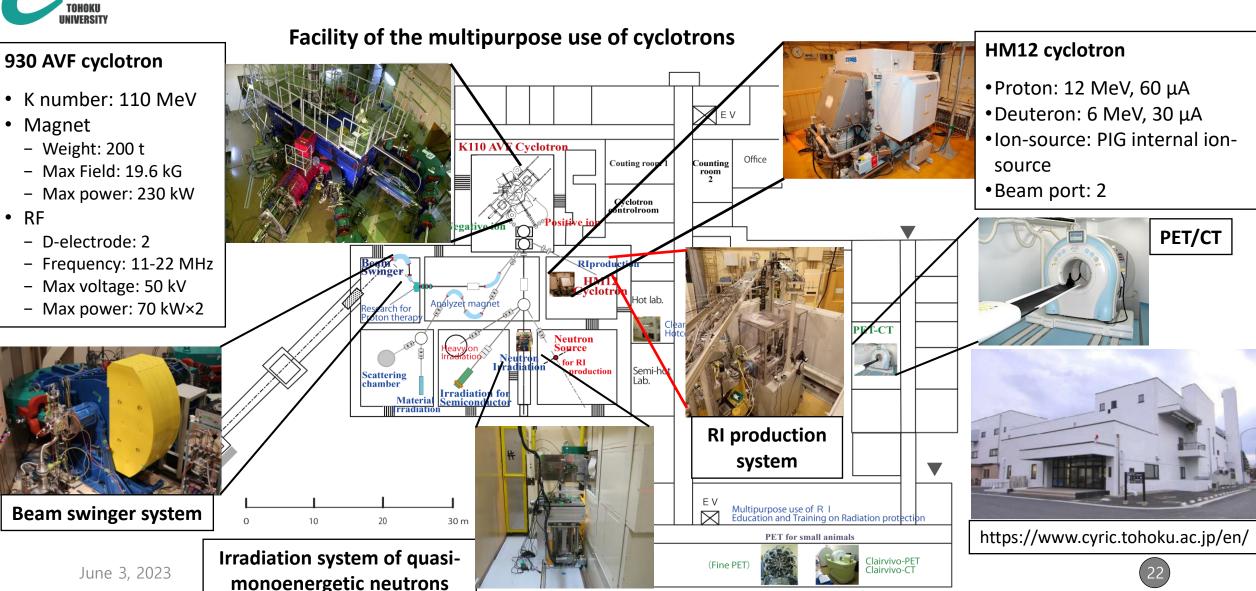

Spectrometer for Ultra-Low Q2 (ULQ2) electron scattering

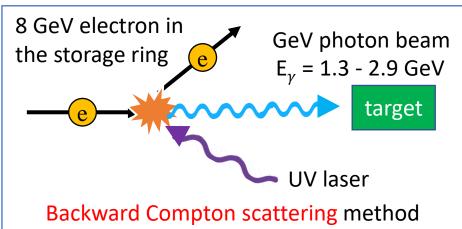

Strangeness nuclear physics

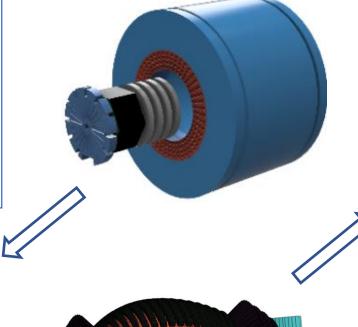
 $(\Lambda \text{ photoproduction near threshold})$

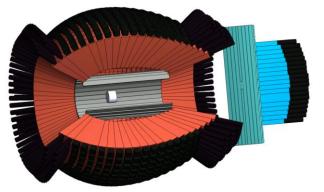
Multi-gamma ray detector system (FOREST)

Hadron physics (Search for dibaryon candidates)

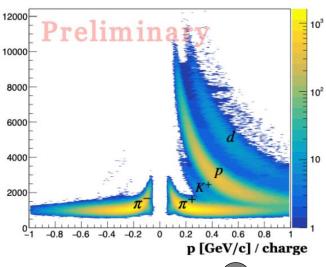

- On-going experiments
 - Proton charge radius (ULQ2)
 - Deuteron charge radius (ULQ2-d)
 - Neutron distribution radius in ²⁰⁸Pb (LEEP)


Cyclotron and Radioisotope Center (CYRIC), Tohoku University

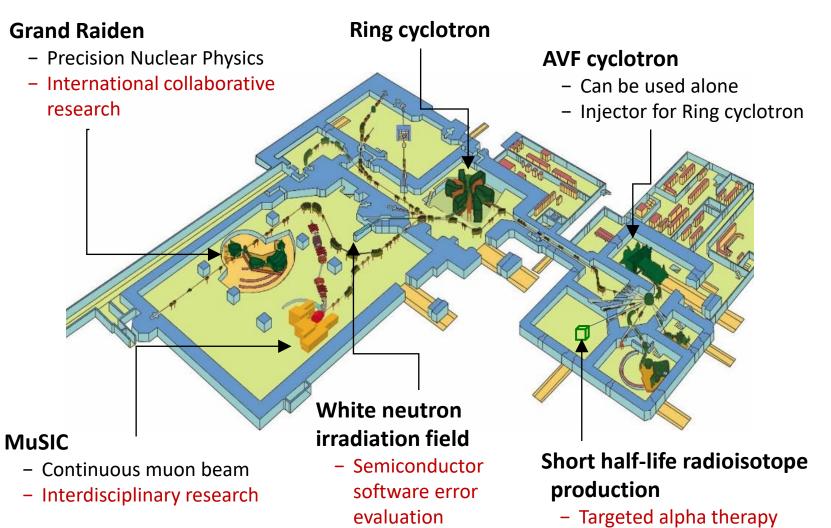



Laser-Electron-Photon facility (LEPS2) @ SPring-8 (2013-)

BGOegg experiment

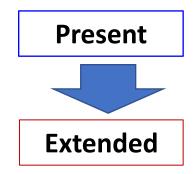

- EM Calorimeter (1,320 BGO crystals)
- Phase-2 upgrade with new forward calorimeter
- Precise measurement of meson photoproduction
- Hadron properties inside nuclei
- Data taking to study hadron properties inside nuclei with the Cu target will start in 2023 after the phase-2 upgrade.

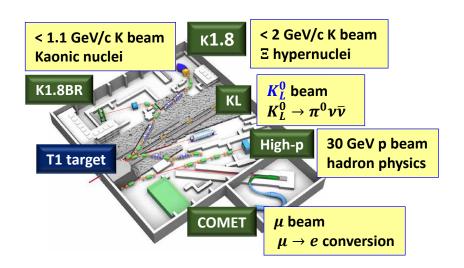
Solenoid experiment

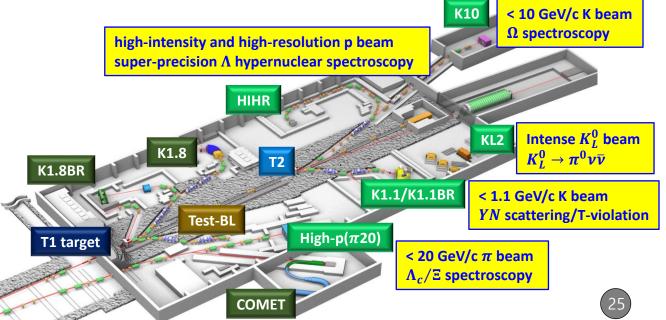

- Large spectrometer system for charged/neutral particles
- Study of exotic hadrons: Pentaquark Θ^+ , Mesonic nuclei $\Lambda(1405)$, etc.
- Physics data taking started in Spring 2022.
- Data analysis for various physics topics is in progress.

Research Center for Nuclear Physics (RCNP): Cyclotron facility

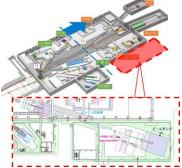
- Completion of the upgrade of AVF cyclotron
 - Beam delivery started in 2022
 - 10 times more beam intensity
- Independent use of AVF
 - Mass production of short-lived radio isotopes
 - 211At to clinical trials of targeted alpha therapy
 - Promotion of a short-lived radioisotope supply platform
- AVF + Ring cyclotron
 - Precision nuclear physics
 - Promotion of muon science
 - Semiconductor software error evaluation tests




Japan Proton Accelerator Research Complex (J-PARC)

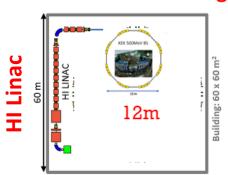


- Additional production target (T2)
- Four more new beamlines (HIHR, K1.1/K1.1BR, KL2, K10)
- Updated beamlines: High-p(π 20), Test-BL

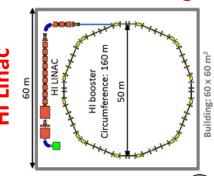


WPAP WG9

- Upgrade of J-PARC for heavy-ion beams
 - New heavy-ion injector (LINAC and BOOSTER)
 - New experimental area and spectrometers
- Staging plan
 - On-going
 - pA collisions using existing beam line and spectrometer (Main Physics topic: Vector meson measurements in e^+e^- decay modes)
 - Upgrades of the spectrometer for hadron measurements
 - Pilot data for heavy-ion physics
 - Phase I
 - New LINAC and reuse of KEK-PS 500 MeV booster
 - Upgrades of the existing spectrometer
 - Beam Intensity: 10⁸ Hz for Au
 - Phase II
 - New booster and new spectrometer
 - Final configuration



Heavy-Ion Annex


Phase I

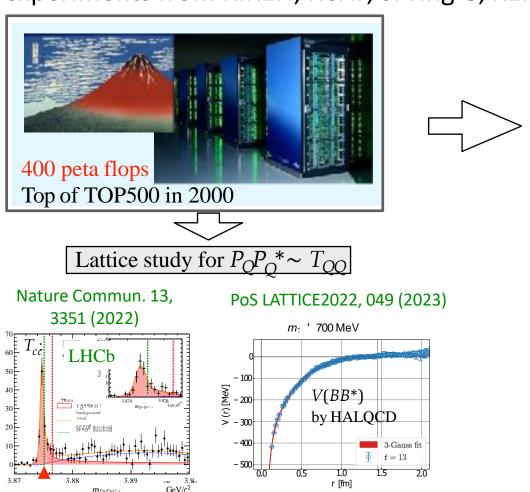
Reused Booster Ring

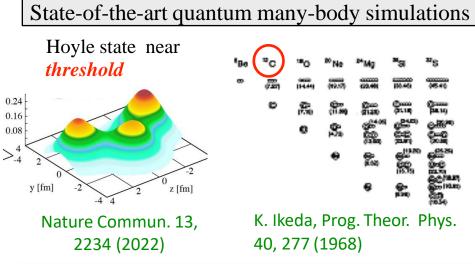
Phase II

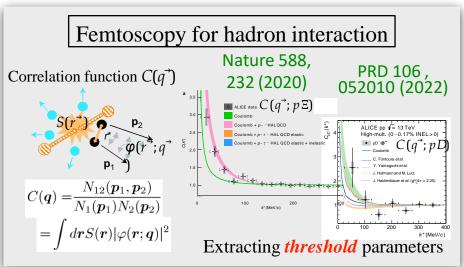
HI Booster Ring

with chiral extrapolation

 $E_B \sim 150 \,\mathrm{MeV}$




■ Theory activities


Very near the *threshold*

June 3, 2023

• First principle calculations by using Fugaku(富岳) supercomputer, and collaborations with experiments from RIKEN, RCNP, SPring-8, KEK, J-PARC, LHC...

Suwa Prize awarded to Prof. Kazuhiro Tanaka

 On March 1st, FAS (Foundation for High Energy Accelerator Science) awarded Prof. Kazuhiro Tanaka with the Suwa Prize (FAS Prize to award for Outstanding Research in High Energy Accelerator Science) for his achievements in the development of radiation-resistant magnets for high intensity accelerator facilities.

Summary

- The current report does not include, as they will be presented in the separate talks,
 - RAON at IBS in Korea (Prof. S.-W. Hong)
 - RIBF at RIKEN in Japan (Prof. H. Sakurai)
- Nuclear physics facilities in Asia having been constructed, commissioned, upgraded, or in the operation stage are
 - RIB accelerators: BRIF, JUNA, HIRFL, HIAF (China), RIBF, RCNP, CYRIC (Japan), RAON (Korea)
 - Hadron accelerators: HIAF (China), J-PARC, RCNP (Japan)
 - Photon & electron accelerators: ELPH, Spring-8 (Japan)
 - Underground facilities: SUPL (Australia), CJPL-II (China), Yemi Lab. (Korea)
- The Asia-Pacific region is very active in the nuclear-physics research with a lot of enthusiasm!