
MIDAS Report from
SCDMS-SNOLAB

How we use MIDAS => Open Issues

Amy Roberts, MIDAS workshop • 07.26.2017

UBC: Belina von Krosigk, Danika MacDonell, Scott Oser, Bill Page, Andrew Scharff, Ben Smith
USD: Sudip Poudel, Amy Roberts, Joel Sander
UMN: Anthony Villano
A&M: Maxx Tepper, Xuji Xiao, Lei Zheng,
Toronto: Matt Wilson
Berkeley: Bruno Serfass

What does SuperCDMS data look like?

● Digitized pulses from many
detectors, each with many channels

● The temperature of the detectors
● Detector settings (bias, current

through sensors, etc.)

2

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz
3

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

4

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer
5

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer

MIDAS History to monitor
detectors => adjust if needed

6

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer

MIDAS History to monitor
detectors => adjust if needed

Start/Stop transitions to
collect random pulses

7

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer

MIDAS History to monitor
detectors => adjust if needed

Start/Stop transitions to
collect random pulses

Frontends to control ODB
- Precise timing
- locking

8

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer

MIDAS History to monitor
detectors => adjust if needed

Start/Stop transitions to
collect random pulses

Frontends to control ODB
- Precise timing
- locking

Lazylogger renames files 9

Take data with SuperCDMS

User tunes 4+ detector channels

Shine light on the detector before
taking data!

Take data with bias set to 0V for
~5 minutes

Shine light on the detector again,
keep detector working well

Take data with bias set to 1V

ODB snapshot
random pulses
triggered pulses
ODB snapshot

T1_V0.mid.gz

ODB snapshot
triggered pulses
ODB snapshot

T2_V0.mid.gz
ODB snapshot
triggered pulses
random pulses
ODB snapshot

T3_V0.mid.gz

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

Use mhttpd to set ODB keys

Sequencer

Use MIDAS History to monitor
detectors => adjust if needed

Start/Stop transitions to
collect random pulses

Frontends to control ODB
- Precise timing
- locking

Lazylogger renames files

Use MIDAS History to
record fridge temp,
trigger rates, ...

10

Open Issues
MIDAS History
Information that should be recorded together is not

Sequencer
Prone to crashing and will be too slow when we run with full set of detectors

Public API
Runs and sequencer are controllable through HTTP commands but these can change

mhttpd
Near-in-time requests over a typical public network often slow mhttpd response time to
several minutes

11

History Bug Type 1: Bank-Writing Out-of-Syncness
1a) ‘SQL version’

Out-of-syncness between first and
subsequent listed struct members when
writing a struct to a history bank.

Present in:

- SQLITE history
- ODBC history
- MYSQL history (?)

1b) ‘MIDAS version’

Out-of-syncness between first and
subsequent banks when writing to
multiple history banks at once.

Present in:

- MIDAS history
- FILE history

12

More on Bug Type 1a - ‘SQL Version’
Struct

Entry 1
Entry 2
Entry 3

Bank
Space for Entry 1
Space for Entry 2
Space for Entry 3

Writing to the Bank

t1 t2 t3

Struct defined with
multiple entries:

Bank defined to
contain the struct:

Struct
Entry 1
Entry 2
Entry 3

Bank
Space for Entry 1
Space for Entry 2
Space for Entry 3

Struct
Entry 1
Entry 2
Entry 3

Bank
Space for Entry 1
Space for Entry 2
Space for Entry 3

….

Point of
Interest
This bug
only
appears
when
connecting
to MIDAS
through an
mserver. 13

More on Bug Type 1b - ‘MIDAS Version’

Bank List
Info for Bank 1
Info for Bank 2
Info for Bank 3

Bank list defined to contain
bank info. The banks may
contain any variable types
(int, struct, array, etc.)

Writing to the Banks

t1 t2 t3

Bank List
Info for Bank 1
Info for Bank 2
Info for Bank 3

MIDAS Banks
Bank 1
Bank 2
Bank 3

Bank List
Info for Bank 1
Info for Bank 2
Info for Bank 3

MIDAS Banks
Bank 1
Bank 2
Bank 3 ….

14

History Bug Type 2: Slow Bank-Writing with SQLITE
When writing to the banks using SQLITE history:

- It takes ~6-12 seconds for bank entries to appear in and
become readable from the bank.

- This is an issue for programs that need to read and write new
bank data at O(1s) rates.

When writing to the banks with other history systems, it takes less than
1 second for bank entries to appear and become readable after they
are written to the bank.

15

Simple commands in a text file,
=> scientists testing detectors
can write useful DAQ
sequences.

Even without expert DAQ
knowledge!

This has never happened
before and significantly
shortens the time to do
on-the-fly tests.

Sequencer: fantastic for detector development

16

Parses commands Controllable via HTTP
requests

Provides status info

Sequencer: issues

➔ If mhttpd crashes, the sequencer crashes.
◆ Separate sequencer from mhttpd?

➔ Fixed delay (1 second) between line execution.
◆ Setting up detectors could dominate deadtime!

➔ Flow control for the production DAQ will be complex
◆ Example: the fridge system wants to take a noisy measurement.

(1) wait until we’ve finished the current run
(2) take the noisy measurement
(3) start the next run

17

Public API: HTTP requests

18

Pulling the Sequencer out of mhttpd is the first step to any solution. Could we reimplement the
sequencer as a Midas frontend? We could re-use much of the existing sequencer code, and a
frontend sequencer would be independent from mhttpd.

Customizing the start/stop run interface:
● Everything we needed can be done

with an HTTP request!
● Many of these HTTP requests are

documented as a public API
○ interact with ODB
○ run a script

● Some are not:
○ Load a sequencer file
○ Start the sequencer
○ Start a run
○ Stop a run

● Using undocumented HTTP
requests means our code breaks
when they change

Public API: MIDAS C/C++ library

19

Pulling the Sequencer out of mhttpd is the first step to any solution. Could we reimplement the
sequencer as a Midas frontend? We could re-use much of the existing sequencer code, and a
frontend sequencer would be independent from mhttpd.

Detector Monte-Carlo programs also generate data files
● Ideally, format would be identical to the format of the DAQ data files!
● The MIDAS bank structure is simple and we could replicate it
● Or link to existing MIDAS bank-writer functions?

T1_1V.mid.gz T2_1V.mid.gz T3_1V.mid.gz

mhttpd: two users => slow response

20

● We send HTTP requests for ODB data about every second
● Two users working with the detector-tuning interface => mhttpd can take

minutes to respond
● Slow-down may be triggered by close-in-time requests

All this data is in the ODB and
comes from an HTTP request to
mhttpd.

The End!

1. MIDAS has allowed us to build
a usable DAQ for detector
testing

2. The HTTP API and Sequencer
have been extremely useful

3. Our production DAQ has to
address mhttpd slowness,
sequencer slowness, and
History bugs

4. Our production DAQ has to
allow complex flow-control

21

The SNOLAB DAQ

MIDAS (midas_fork.git)

- General framework, not specific to CDMS
- Thomas Lindner et al.
- Using MIDAS Sequencer, History (Danika), etc.

Data I/O (IOLibrary.git)

- Packs/Unpacks CDMS data
- Matt Wilson et al.
- First use in frontends

Midas Tools (MidasTools.git)

- Tune SQUIDs, measure Rp/Rn
- Bruno, Bill et al.
- Reads data provided by frontends

cdmsbats (cdmsbats.git)
- Read and process the data
- Bruno, Anthony et al.

DCRC UI (dcrc_ui.git)

- Control detectors, data runs
- Amy, Xuji et al.
- Uses code in MidasDAQ to Flash, etc.

Frontends (MidasDAQ.git)

- Talk to our DCRC hardware
- Belina et al.

A
pp

ro
xi

m
at

e
D

ep
en

de
nc

y

22

