

Content
• Introduction to the WAGASCI experiment
• Old DAQ and new DAQ
• Pyrame : WAGASCI frontend software
• BabyMIND DAQ
• MIDAS as a user interface
• What I have done
• What is left to do

2

The WAGASCI experiment

• WAGASCI is a new neutrino-
water cross section experiment.

• WAGASCI is now officially part of
T2K

• It uses the same neutrino beam as
ND280 and is located just below it,
but the off-axis angle is different:

• ND280 = 2.5° off-axis
• WAGASCI = 1.5° off-axis

3

The WAGASCI experiment
• It is aimed at measuring the neutrino-water

and neutrino-hydrocarbon cross section
and their ratio

• Its main target is made of water:
• water = 80%
• hydrocarbon = 20%

• Because of its grid-like structure it has 4pi
acceptance

• The BabyMIND magnetized muon
spectrometer can measure the charge of the
outgoing muons (useful to suppress the
wrong sign background)

4

Commisioning phase (2017-2018)
• Only a small subset of the detectors (no SMRD nor BabyMIND)
• The DAQ used during the commisioning phase was developed

internally. It was not meant to be readable or maintenable (no
documentation, no comments, no internal coherence).
Basically it was just a bunch of Python and bash scripts

• On top of that the old DAQ had the following shortcomings:
• No online monitor (only semi-offline monitor)
• No database (no info about the runs is stored)
• Many memory leaks (in the calibration and analysis code)

• We should teach students good coding practices. IMHO writing
bad code is forgivable, not following good coding practices is
not.

5

New WAGASCI DAQ (swith to MIDAS)
• We wanted to improve on the existing DAQ while keeping as

much code a we could
• At the same time, because ND280 is using MIDAS, we thought

that it may be better to have a similar user interface
• If the user-interface is similar, we could have a single shifter

for ND280, INGRID and WAGASCI
• The new DAQ should:

• include an online monitor
• organize the runs in a sort of database
• use MIDAS at least as a user interface
• have proper documentation
• don't use bash scripts (at least not in production)

6

MIDAS
(user interface)

 WAGASCI
DAQ

(built using the
Pyrame framework)

BabyMIND
DAQ

Frontend DAQ : Pyrame
• Pyrame is used as the frontend software for all the electronics

and slow devices.
• It interfaces directly with the electronics and implements the

most basic functions.
• Uses Python as a scripting language.

USER CODE
(different for each module)

PYRAME CODE
(same for every module)

Pyrame is made up by
“Pyrame modules”. Each
module is indipendent from
each other and has a well
defined API.

7

Developed at LLR
by Frederic
Magniette and
Miquel Rubio-Roy

BabyMIND DAQ
The BabyMIND DAQ is completely
indipendent from the WAGASCI
DAQ

PROS CONS

It has many features There is no
documentation

It is complete It is sort of a black box

It has a nice GUI It was not developed
to interface with
anything else

It runs both in
Windows and Linux

It written in C# (not a
language very used in
the HEP world)

No online monitor
8

Developed at
University of
Geneva by Favre Y.,
Parsa S. and others

Pyrame Module with simple
functions (high level)

Pyrame HW BUS

Hardware
(PSU, Temp
probe etc ...)

MIDAS
(History, Graphs,

Alarms, Advanced
Slow Control, etc ...)

MIDAS- Pyrame
Interface (TCP)

It would also be possible
to control the DAQ system
from remote if J-PARC allows it. 9

10

Custom pages

• Run control

• Slow control

• Configuration editor

• Backup and servers maintenance

• Online monitor (TO-DO)

• BabyMIND DAQ interface (TO-DO)
11

MIDAS - Pyrame comparison
MIDAS Pyrame
Full-blown DAQ software suited for
middle/big experiments

suited for prototyping and small
experiments

Powerful and very customizable GUI Basic GUI
Many options to set up a database There is a database but is very

buggy and will be removed in the
near future

Mainly written in C/C++/Javascript Mainly written in C/Python
Quite steep learning curve Quite easy to add new functionality
Still no support for the ROC chips Complete support for the ROC chips

12

What I have done
• Temperature sensors frontend (C)
• Water level sensors frontend (C)
• Power supply frontend (C)
• Pyrame frontend (C)
• BabyMIND DAQ frontend (C)
• Trigger frontend (C++)
• Written some of the custom pages (in HTML and Javascript)

13

What I still need to do
• Port all the C frontends to C++
• Online monitor custom page
• Interface between MIDAS and BabyMIND
• History plots for the slow control (should be easy)
• Familiarize with the alarm system
• Find a way to send the WAGASCI raw data to MIDAS using

MIDAS events (it should be possible)
• Find a way to send the BabyMIND raw data to MIDAS using

MIDAS events (it may be not possible)
14

Call a C++ library (a function) from the GUI

• I wanted to call a particular function of a C++ library from a
custom page. I was able to do that my adding a few lines to the
MIDAS server (mhttpd.cxx) to add a custom RPC call.

• Then I was told that there are some RPC calls just for that
purpose (exec_script)

• I feel the need for a slightly easier/clearer way to call a local
program or function from the GUI

• The documentation regarding this could use some work

15

Backup

16

WAGASCI electronics

17

BORG backup
(KEKCC server)

MIDAS
(ANA PC in the
WAGASCI rack)

Pyrame
(DAQ PC in the
WAGASCI rack)

BabyMIND DAQ
(BabyMIND PC)

Run
control

Continuously
backed up to the
KEKCC server

The raw data is
saved on hard
disk locally (ANA
PC)

MIDAS doesn't
receive the raw
data

The raw data is saved on
hard disk locally (where?) 18

19

BORG backup
(KEKCC server)

MIDAS
(ANA PC in the
WAGASCI rack)

Pyrame
(DAQ PC in the
WAGASCI rack)

BabyMIND DAQ
(BabyMIND PC)

Continuously
backed up to the
KEKCC server

Raw data

Run control

MIDAS is accumulating, putting together
and monitoring/analyzing all the data of

both WAGASCI and BabyMIND

Slow control

20

The cabling is not finished and the WAGASCI electronics is not
fully operational, yet. So we had not a chance to test all the slow
control devices all together.

