

Search for Low Mass Dark Photons at the Belle II Experiment

ljeong Na, Savino Longo

University of Manitoba

Thomas Grammatico, Michael Roney, Dhwani Sutariya University of Victoria

Low mass dark photons

- lacksquare
- It's mass $m_{A'}$ and ϵ are free parameters ullet
- m_{γ} : dark matter mass
- Below muon pair production threhold, ulletA' only decays into electron pair

Hypothesis : Dark photon A' interacts with Standard Model by kinematic mixing, with mixing strength ϵ

It $m_{A'} \leq 2m_{\gamma}$ it must decay into Standard Model particles and the branching fraction depends on $m_{A'}$

Low mass dark photons

- e^+e^- collider experiments probe A' produced from $e^+e^- \rightarrow A'\gamma \rightarrow \ell^+\ell^-\gamma$ reaction. Previously BaBar set up an upper limits (90% CL) of the mixing strength in $M_{A'}$ [0.02GeV, 10GeV]
- ullet \bullet

- → X17 ? unknown nuclear effect?

Low mass dark photons and ATOMKI anomaly

•

202

Existing experiments could not cover this region

- Babar mass scan starts from 20MeV
- NA48 is not sensitive to protophobic X17
- NA64 covered most of the region, but $6.8 \times 10^{-4} \lesssim \epsilon \lesssim 1.4 \times 10^{-3}$ is remaining unexplored

SuperKEKB and Belle II

- ullet
- Started first physics run in 2019, 427/fb data readied for the analysis lacksquare
 - Well known initial state e^+e^- -
 - Specialized triggers for dark sector signatures
 - Improved vertex resolution and tracking perfomance

Belle II detector is located at the SuperKEKB asymmetric electron-positron collider operating at 10.58GeV

Search for low mass dark photons at Belle II

- Search for $e^+e^- \rightarrow A'\gamma \rightarrow e^+e^-\gamma$
- Signature : localized excess in Invariant mass $(M_{e^+e^-})$ distribution lacksquare

Reconstruction

- Select two electron tracks, construct A' candidate lacksquare
- Perform vertex fit \bullet
- Combine A' with an energetic photon lacksquare
- Perform energy constrained kinematic fit •

Search for low mass dark photons at Belle II

- Search for $e^+e^- \rightarrow A'\gamma \rightarrow e^+e^-\gamma$
- Signature : localized excess in Invariant mass $(M_{e^+e^-})$ distribution lacksquare
- Dominant background : $e^+e^- \rightarrow \gamma\gamma \rightarrow e^+e^-\gamma$ (Diphoton event with photon conversion) ullet

Search for low mass dark photons at Belle II

Bellell Simulation

Visible Matter https://belle2.jp/discover/

- Converted photon background mimics signal •
- Sideband is important to validate this background ullet

- Converted photon background mimics signal lacksquare
- Sideband is important to validate this background lacksquare
 - Dark photons decay promptly -> Signal events distribute at transverse distance \sim 0cm. -

* "True" vertex location in transverse plane

- Converted photon background mimics signal lacksquare
- Sideband is important to validate this background lacksquare

 - Photon conversion happens at the material
 - ➡ Use transverse distance?

- Converted photon background mimics signal lacksquare
- Sideband is important to validate this background lacksquare
 - Dark photons decay promptly -> Signal events distribute at transverse distance \sim 0cm.
 - Photon conversion happens at the detector material
 - ➡ Use transverse distance?
 - Misreconstructed low mass signals also have peak at conversion peak ... Cannot be used by itself

Sideband proposal

- Vertex fit shifts Invariant mass of A' candidate
- The Invariant mass shift $M_{e^+e^-}^{diff} = M_{e^+e^-}^{After Flt} M_e^{-1}$ concentrated at transverse distance peak

The Invariant mass shift $M_{e^+e^-}^{diff} = M_{e^+e^-}^{After Flt} - M_{e^+e^-}^{Before Flt}$ can separate signal and background events

Sideband proposal

- Vertex fit shifts Invariant mass of A' candidate ullet
- concentrated at transverse distance peak -> Define 2D sideband

The Invariant mass shift $M_{e^+e^-}^{diff} = M_{e^+e^-}^{After Flt} - M_{e^+e^-}^{Before Flt}$ can separate signal and background events

Summary & Projection

- Belle II analysis on $e^+e^- \rightarrow A'\gamma \rightarrow e^+e^-\gamma$ is ongoing to probe this region
 - Sideband study to validate converted photon background is presented
 - Planning to apply on 427/fb data -

ω

Belle II 314/fb

Belle II 1/ab

ATOMKI anomaly suggests 17MeV dark photon, e^+e^- collider experiments search for it's visible decay Below 20MeV is remaining unexplored due to the uncertainty from converted photon background

