


Neutron Capture Processes
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Neutron Capture Processes

time scale: 100+ years
 ~108 neutrons/cm3

AGB star
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Neutron Capture Processes

time scale: 10 seconds
 ~1022 neutrons/cm3

Neutron star mergers & 
core collapse supernova
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Neutron Capture Processes

i-Process
‘Intermediate process’

time scale: 10+ minutes
~1013-1015 neutrons/cm3

Metal poor AGB stars 
(CEMP-i) & 
Rapidly accreting white 
dwarfs (RAWP)
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Neutron Capture Processes

Roederer et al Astroph. J. 821 (2016) 37

Intermediate n-capture 
process
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Marco Pignatari, 
Russbach school 2014

i –process Relevance

Pavel Denisenkov 
7



Constraining Neutron Capture Rates
• Since direct measurements of neutron capture are very 

difficult with radioactive isotopes, we require an 
alternative

• Instead, we can calculate it using data taken from 
indirect measurements

→The Oslo Method

• Using Brink-Axel hypothesis with spin corrections, 
decay properties can be measured with population by β-
decay
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Intro to the Oslo Method
• The Hauser-Feshbach neutron-capture cross-

section is dependent on the Nuclear Level Density 
(NLD) and γ-Strength Function (γ-SF) 

� NLD: Density of excitation as a function of energy

� 𝛄-SF: Strength of decay for a given γ- ray energy

• What data do we need?
� Nuclear level structure information

� The ratio of γ-decay intensities as a function of γ-ray 
energy per parent level

→ Experimentally measure shell structure and 
γ-decays of yield nucleus

Larsen, Spyrou, Liddick, Guttormsen 
PPNP,Vol 107, 69-108 (2019) 9



𝛽-Decay with SuN
• SuN – Total Absorption Spectrometer 

composed of 8 large volume NaI 
crystals, each with 3 PMTs

• SuNTAN – Tape Transport System

• Fiber Detector -  β-detection via 
paneled  scintillating barrel

[A. Simon, S.J. Quinn, A. Spyrou et al, NIM A 703, 16 
(2013)]

Caley Harris
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Total Absorption Spectrometry
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Total Absorption Spectrometry

𝜷

12



Total Absorption Spectrometry

𝜸

Primary 𝜸
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Total Absorption Spectrometry

𝜸𝜸

Primary 𝜸
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Total Absorption Spectrometry

𝜸

𝜸

𝜸

Primary 𝜸
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Total Absorption Spectrometry

Ex

𝜸

𝜸

𝜸

Primary 𝜸
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T1/2 = 58.2 s

𝛽-Oslo Method

100% 𝛽! decay
 T1/2 = 9.65 h

• Correct (Eγ,Ex) matrix for detector response via 
“unfolding”

• Extract primary γ-rays for each excitation-energy 
bin

• Extract nuclear level density (NLD) and γ-strength 
function (γ-SF) from primary γ-ray matrix

• Normalize NLD and γ-SF using known discrete 
levels and NLD at neutron separation energy Sn

• Use the NLD and γ-SF to guide models to be used 
as input in the nuclear reaction code TALYS
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100% 𝛽! decay
 T1/2 = 9.65 h

T1/2 = 58.2 s

𝛽-Oslo Method
• Correct (Eγ,Ex) matrix for detector response via 

“unfolding”

• Extract primary γ-rays for each excitation-energy 
bin

• Extract nuclear level density (NLD) and γ-strength 
function (γ-SF) from primary γ-ray matrix

• Normalize NLD and γ-SF using known discrete 
levels and NLD at neutron separation energy Sn

• Use the NLD and γ-SF to guide models to be used 
as input in the nuclear reaction code TALYS
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Raw matrix

EX

Eγ

Producing Primary Matrix

91Sr
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Raw matrix “Unfolded” matrix

EX

Eγ Eγ

Producing Primary Matrix

Detector response
deconvolution 

91Sr 91Sr
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Raw matrix Primary γ 
coincidences“Unfolded” matrix

EX

Eγ Eγ Eγ

Producing Primary Matrix

Detector response
deconvolution 

Iterative subtraction
of fed γ-rays

91Sr 91Sr 91Sr
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First Results
91Sr 91Sr
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Resulting NLD & 𝜸-SF
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Experimental Results
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Experimental Results

1013 n/cm3

1014 n/cm3

Pavel Denisenkov 25



Summary
• Populated 91Sr via β-decay at NSCL in 2018 and measured with with SuN total 

absorption spectrometer

• Performed the Oslo method to produce the primary matrix and extract the NLD 
and γ-SF

• Used NLD and γ-SF constraints to reduce uncertainty on the neutron-capture 
rate of 90Sr

• First experimental constraint of 90Sr(n,𝛾)91Sr used in one-zone i-process 
nucleosynthesis simulation to model impact on peak element abundances

• Paper coming soon
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Intro to the Oslo Method

Supplementary 1

• The Hauser-Feshbach neutron-capture cross-
section is dependent on the Nuclear Level Density 
(NLD) and γ-Strength Function (γ-SF) 

� NLD: Density of excitation as a function of energy

� 𝛄-SF: Strength of decay for a given γ- ray energy

• What data do we need?
� Nuclear level structure information

� The ratio of γ-decay intensities as a function of γ-ray 
energy per parent level

→ Experimentally measure shell structure and 
γ-decays of yield nucleus
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𝛽-Decay with SuN
• Primary beam of 120 MeV/nucleon 
96Zr on 9Be target

• Secondary beam separated in 
A1900 fragment separator, 
delivered to N4 gas cell

• 91Rb beam extracted and delivered 
to SuN setup at 245 particles/s

• 5 min on / 5 min off beam 
   between tape cycle

Sean Liddick
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91Sr

Constraints on NLD & 𝜸SF

91Sr

Supplementary 3



-𝝆(E − Eγ) = Aexp[𝛼 (E − Eγ)] ρ(E − Eγ)

Constraining 𝜸-ray Strength Function 

0𝒇(Eγ) = B exp(𝜶Eγ) f(Eγ)
91Sr

Supplementary 4


