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• Search for new resonances has historicallly been the main strategy for 
discovery in the experimental high energy physics.

• Explored limited region till date in the observable space.
• Accelerated approach is required to search for new resonance that will

cover vast observable space.
• A search strategy that is capable of:

1. Identifying mass bumps directly in the experimental data 
without the need of modeling the background. 

2. Rapid scanning of many final states in search for deviation.
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Motivation

Higgs boson decaying to a 
pair of photons (𝐻→𝛾𝛾) [2]

Many final states that we have not checked yet [1] 



Data-Directed Paradigm 
• The Data Directed Paradigm (DDP) is a search strategy to efficiently identify regions of interest in 

the data. It requires two ingredients :
1. Well established property of the SM with respect to which deviations can be searched for
 Invariant Mass Distribution (smoothly falling when no resonance)
2. Efficient algorithm to scan the observable-space in search for deviations of this property 
 Neural Network getting statistical significance for bumps 
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Neural Network Architecture
• Deep neural network (NN) to map any invariant mass distribution into a distribution of 

statistical significance (z distribution)
• Input : Vector of bin entries from invariant mass histogram
• Output : Vector of statistical significance z from likelihood-ratio test

• 1D convolutions with different 
kernel sizes followed by a dense 
layer

• Intuitive and agnostic to the number 
of bins in the histogram 
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Dark Machines Dataset
• Using the Dark Machines (DM)[3] dataset :
• Dataset designed to test anomaly detection 

techniques 
• Contains all of the highest cross-section 

processes at the LHC 
• Generation with Madgraph and Pythia, 

including fast detector simulation using Delphes 
• Events divided into signal regions/channels 

e.g. channel 3, which is more inclusive with cuts 
on ETmiss > 100 GeV and HT  ≥ 600 GeV 

• Dataset equivalent to 10 fb-1
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Dark Machines Sample Processing 
• Get all the possible combinations of the selected objects :

• Electron  
• Muon
• Photon 
• Jet 

• Additional kinematic cuts:
• ETmiss > 200, 500 GeV ; leading object pT > 100, 200, 400 GeV ...
 

• Split the sub-dataset according to jet multiplicity 
• Number of jets in final state : 0 jet, 1 jet, 2 jets, ... , ≥ 6 jets (depends on the available stat) 
• Motivation: reduce look-elsewhere effect by requiring a signal to be present in neighboring jet bins

• Build the variables 
• Mass distributions of the objects and their combinations 
• Transverse mass distributions including ETmiss 

• Reconstructed leptonic Z: lepton pair compatible with leptonic Z decay
• Boosted top: jet compatible with hadronic decay of top 
• Boosted hadronic W/Z boson: jet compatible with hadronic decay of W/Z 
• High mass jet: jets with mass > 200 GeV 
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• Background
• Smoothly descending analytical functions

• Fits to Dark Machine simulation data
• Inject signal 

• Inject a Gaussian signal
• Combine background and signal
• Poisson fluctuate the histogram 
• Calculate the true significance using the likelihood ratio

• Training Data
• Histograms with 30 to 100 bins
• Broad dynamic range, 10 to 100k entries per bin
• Different strengths of the signals (1 to 10σ)

Preparation of Training Data 
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• Quantifying Performance in terms of difference between 
Z#$%&'() and Z*$&+

'()  maximum significance. 
• 𝐙𝐭𝐫𝐮𝐞𝐦𝐚𝐱: maximal significance calculated via the likelihood 

ratio test true
• 𝐙𝐩𝐫𝐞𝐝𝐦𝐚𝐱  : maximal predicted significance 

• Majority of entries should have 𝐙𝐭𝐫𝐮𝐞𝐦𝐚𝐱 - 𝐙𝐩𝐫𝐞𝐝
𝐦𝐚𝐱 close to 0 with 

the smallest variance possible 

• Non-zero significance for background-only histograms 
• Due to look-elsewhere-effect 
• Could artificially bias the performance at low significance 

Performance Evaluation of Neural Network



9

Performance on the Test Sample 
 • A mean (μ) of −0.05 indicates a true 

negligible bias in the prediction 
• 0.64 standard deviation (σ) measures its 

precision 

• Excellent discriminating performance of 
signal and background with an AUC of 
0.900 
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Finding Higgs with DDP 

 
• Predicted the Higgs in the correct mass position
• Predicted significance of 4.6σ whereas the ATLAS significance is 3.7σ
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BSM Signal Datasets
• Using the Dark Machines dataset to construct BSM 

signal datasets

• BSM signal datasets: 
• Simulated new physics events added on top of the 

backgrounds 
• Used to test the network if it can find the new physics 

particles 
• Different levels of difficulty (e.g. cross-section, mass 

values, etc) 

• Some of the new physics models we have available include: 
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Finding BSM Signals

 

• Tested over simulated BSM signals added to the Dark Machines background
• Various BSM signals tested and successfully found
• False-positive rate of 0.1% when tested over background-only sample 

Successfully finds an excess at the expected mass of the stop at 1 TeV Successfully finds bump in W′
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Conclusion
 • DDP is an accelerated approach to search for new resonance in the vast 

observable space
• Successfully tested on Higgs bump and various BSM signals such as RPV 

stop and W′ 

• Future developments 
• Application to real experimental data, focusing on Run 2 
• Use full MC simulation data with basic selections 
• First iteration using single-lepton trigger and same objects 
• Eventually adding more objects, such as large-R jets 
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Thanks
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