Observation of highly forbidden M1 transition in 7s-8s transition in francium.

atomic par

riment

Anima Sharma, University of Manitoba.

WNPPC 2024.

Why are we doing this?

- ✤ To understand the basic building blocks of matter.
- Do we understand all fundamental forces?

- Gravity
- Electromagnetism
- Weak interaction
- Strong interaction

Why are we doing this?

✤ To understand the basic building blocks of matter.

Do we understand all fundamental symmetries? Parity Conservation in Weak Interaction [1]?

Parity symmetry $\mathbf{P}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}.$

 $^{60}_{27}$ Co $\rightarrow ~^{60}_{28}$ Ni + e⁻ + $\overline{\upsilon}$

Fig.[ref. 2] Distribution of electrons in the β decay of polarized $^{60}_{27}$ Co nuclei in C.S. Wu et. al [1].

[1] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413.
[2] B.M. Roberts, V.A. Dzuba, and V.V. Flambaum, Annu. Rev. Nucl. Part. Sci., 63–86 ,2015.

Why are we doing this?

✤ To understand the basic building blocks of matter.

Do we understand all fundamental symmetries?

Parity symmetry $\mathbf{P}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}.$

Weak Interaction [1]?

 $^{60}_{27}$ Co $\rightarrow ~^{60}_{28}$ Ni + e⁻ + $\overline{\upsilon}$

Parity Conservation in

e

Fig.[ref. 2] Distribution of electrons in the β decay of polarized $^{60}_{27}$ Co nuclei in C.S. Wu et. al [1].

Key to solve the question?

Standard Model of Elementary Particles

Pic. courtesy to Wikipedia.

C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. **105**, 1413.
 B.M. Roberts, V.A. Dzuba, and V.V. Flambaum, Annu. Rev. Nucl. Part. Sci., 63–86, 2015.

Exploring the mediators & physics of weak interaction

Exploring the mediators & physics of weak interaction

Unique signature of weak interaction – parity violation (PV).

photon

2

Z boson

=80.360 GeV/c2

W boson

◆ Parity violating effect in atoms → caused by an interference between EM (γ) and weak amplitudes (heavy intermediate Z⁰boson).

Atomic parity violation (APV) arises with PV exchange of Z⁰ bosons between atomic electrons and quarks inside the nucleus.

★ Experimentally → APV effect in γ induced transitions between atomic states
→ interference of EM and PV transition amplitudes.

Weak interaction

Exploring the mediators & physics of weak interaction

Unique signature of weak interaction – parity violation (PV).

photon

2

=80.360 GeV/c2

W boson

 \diamond Parity violating effect in atoms \rightarrow caused by an interference between

Atomic parity violation (APV) arises with PV exchange of Z⁰ bosons between atomic electrons and quarks inside the nucleus.

★ Experimentally → APV effect in γ induced transitions between atomic states
→ interference of EM and PV transition amplitudes.

HPV mixes opposite parity atomic states

$$\begin{split} |\mathsf{S}\rangle_{real} &= |\mathsf{S}\rangle_{EM} + \delta_{PV} |\mathsf{P}\rangle_{EM} , \\ &< n'\mathsf{S}|\mathsf{H}_{PV}| \, n\mathsf{P}\rangle \propto \mathsf{Z}^3. \end{split}$$

Weak interaction

An ideal candidate for APV: Francium

3

✤ Z = 87, a heavy nuclei

$$\frac{\delta_{\rm PV}({\rm Fr})}{\delta_{\rm PV}({\rm Cs})} \approx 18$$

Cesium (Z = 55) Best measurement done so far with 0.35 % accuracy.

Heaviest alkali with simple structure, Theory calculations can be reliably extracted, Different isotopes available.

https://periodictable.com /Elements/087/index.html

An ideal candidate for APV: Francium

https://periodictable.com /Elements/087/index.html

An ideal candidate for APV: Francium

Francium trapping facility

4

♦ No stable isotope → Use a radioactive beam facility → cool and trap atoms in magneto optical trapping (MOT) → suspend 10^5 Fr atoms.

Francium trapping facility

4

Capture trap

✤ No stable isotope → Use a radioactive beam facility → cool and trap atoms in magneto optical trapping (MOT) → suspend 10^5 Fr atoms.

MOT

Understanding of magnetic dipole M1 transition

M1 (F', m' \rightarrow F, m) = $\langle 8S_{F',m'} | \vec{\mu}_M \cdot \vec{B} | 7S_{F,m} \rangle$

where $\overrightarrow{\mu_M} = \overrightarrow{\mu_B} (g_L L + g_S S + g_I I)$, $\overrightarrow{\mu_B}$ is Bohr magneton.

(M1 vanishes in non-relativistic approximation because spatial parts of different $nS_{1/2}$ are orthogonal.)

Understanding of magnetic dipole M1 transition

6

M1 (F', m' \rightarrow F, m) = < 8S_{F',m'} $|\vec{\mu}_M.\vec{B}|7S_{F,m} >$

where $\overrightarrow{\mu_M} = \overrightarrow{\mu_B} (g_L L + g_S S + g_I I)$, $\overrightarrow{\mu_B}$ is Bohr magneton.

(M1 vanishes in non-relativistic approximation because spatial parts of different $nS_{1/2}$ are orthogonal.)

M1 (F, m \rightarrow F', m') = M1' ($\hat{k} \times \hat{\varepsilon}$).< F', m' $|\vec{\sigma}|$ F, m >,

♦ To measure: $M1' \propto M1_{rel} + (F - F') M1_{hf}$.

where $M1_{rel}$ is the relativistic and spin orbit effect \rightarrow difficult! M1_{hf} is from off-diagonal hyperfine interaction.

 $M1_{hf} \sim 12\%$ contribution to M1'.

Understanding of magnetic dipole M1 transition

6

M1 (F', m' \rightarrow F, m) = < 8S_{F',m'} $|\vec{\mu}_{M}.\vec{B}|7S_{F,m} >$

where $\overrightarrow{\mu_M} = \overrightarrow{\mu_B} (g_L L + g_S S + g_I I)$, $\overrightarrow{\mu_B}$ is Bohr magneton.

(M1 vanishes in non-relativistic approximation because spatial parts of different $nS_{1/2}$ are orthogonal.)

 $M1 (F, m \rightarrow F', m') = M1' (\hat{k} \times \hat{\varepsilon}) < F', m' |\vec{\sigma}| F, m >,$

♦ To measure: $M1' \propto M1_{rel} + (F - F') M1_{hf}$.

where $M1_{rel}$ is the relativistic and spin orbit effect \rightarrow difficult! M1_{hf} is from off-diagonal hyperfine interaction.

 $M1_{hf} \sim 12\%$ contribution to M1'.

♦ Measure $\frac{M1}{\beta}$ on ΔF = ±1 and know M1_{hf}
→ to calibrate β and M1_{rel}.

Intensify 506 nm with power build up cavity (PBC)

7

Intensify 506 nm with power build up cavity (PBC)

- 7
- Spherical mirror resonator \rightarrow Power build up ~ 4000 x,
- ♦ UHV compatible → Pound-Drever-Hall → lock the cavity to TEM_{00} mode,
- Accommodate electric field plates and MOT beams,

Section view of science chamber with PBC.

First observation of magnetic dipole M1 transition in 2021

 $\mathbf{R}_{7S \to 8S} \propto \beta^2 \mathbf{E}^2 + (\mathbf{M1}_{rel} \pm \mathbf{M1}_{hf})^2$ E = 0 V/cm

↔ Could only measure $\Delta F = -1$,

WNPPC 2024

8

First observation of magnetic dipole M1 transition in 2021

8

Unassisted of any 'Stark mixing', E = 0 V/cm.

 $\mathbf{R}_{7S \rightarrow 8S} \propto \beta^2 \mathbf{E}^2 + (\mathbf{M1}_{rel} \pm \mathbf{M1}_{hf})^2$

- ↔ Could only measure $\Delta F = -1$,
- Measure ratio M1/ β via transition rates at various E fields,

• Combine calculations of β and $M1_{hf}$ to experimentally determine $M1_{rel}$.

TABLE I. A comparison of the relativistic component for the Fr $7s \rightarrow 8s$ reduced M1 matrix element between theory and experimental values.

References	$M_{\rm rel}^{\rm RME}(\times 10^{-5} \mu_{\rm B}/{\rm c})$
Theory	
Savukov et al.[1], 1999	113
Safronova et al.[13], 2017	No Breit: 139.9
	Breit: 137.4
Experimental	
This work	$152(12)_{expt}(1)_{theo}$
*Prelimina	ary results.

WNPPC 2024

First observation of magnetic dipole M1 transition in 2021

Unassisted of any 'Stark mixing', E = 0 V/cm.

 $\mathbf{R}_{7S \rightarrow 8S} \propto \beta^2 \mathbf{E}^2 + (\mathbf{M1}_{rel} \pm \mathbf{M1}_{hf})^2$

• Could only measure $\Delta F = -1$,

taken at 0 V/cm for Fr 211.

- Measure ratio M1/ β via transition rates at various E fields,
- Combine calculations of β and $M1_{hf}$ to experimentally determine $M1_{rel}$.

TABLE I. A comparison of the relativistic component for the Fr $7s\to 8s$ reduced M1 matrix element between theory and experimental values.

References	$M_{\rm rel}^{\rm RME}(\times 10^{-5} \mu_{\rm B}/{\rm c})$
Theory	
Savukov et al.[1], 1999	113
Safronova et al.[13], 2017	No Breit: 139.9
	Breit: 137.4
Experimental	
This work	$152(12)_{expt}(1)_{theo}$
*Preliminary r	esults.

Challenges:

transition \rightarrow hyperfine

Saw saturation of

 level pumping.
 → notable % of atoms decay to other HF state → no longer resonant to 506 nm.

WNPPC 2024

Improvements in detection system

◆ Detection system: Photon detection efficiency $\approx 1/4000$,

(Solid angle * Filter transmission * Polarizing beam splitter * Quantum efficiency),

9

Improvements in detection system

9

 Detection system: Photon detection efficiency ~ 1/4000, (Solid angle * Filter transmission * Polarizing beam splitter * Quantum efficiency),

Burst signal: Bursting of photons on D2 cycling transition,

Improvements in detection system

9

 \mathbf{V}

♦ Detection system: Photon detection efficiency $\approx 1/4000$,

(Solid angle * Filter transmission * Polarizing beam splitter * Quantum efficiency),

- \rightarrow Upped from the photomultiplier tube to SiPM,
- ◆ Burst signal: Bursting of photons on D2 cycling transition,
 → estimated cycling of ~ 16000 photons in ~ 1.3 ms for Fr 211.

Upper burst signal observed with multi-channel scalar.

Detection rate ~ MHz regime,

10

New measurement of M1 dipole transition in 2023 2023 Pure M1 E = 0 V/cm380✤ In 2023, did on 360 both $\Delta F = \pm 1$, 340Counting Rate (kHz) Detected with 320 burst technique, 300 Got better 280statistics, 260✤ 2023 data analysis 240in progress. 220Normalized Residuals

15

Frequency shift (MHz)

20

25

New measurement of M1 dipole transition in 2023

10

- In 2023, did on both $\Delta F = \pm 1$,
- Detected with burst technique,
- Got better statistics,
- 2023 data analysis in progress.

New measurement of M1 dipole transition in 2023

Summary

- ✤ Measured M1 a very faint, 13 orders weaker transition than an allowed transition.
- $\diamond \rightarrow$ by implementing PBC and Burst technique.
- Increased the sensitivity of our system by several folds.
- ♦ Highly motivated for precision APV measurements (f \approx 16.5).
- ✤ Complete the 2023 M1 analysis.
- → Determine M1_{hf} precisely → establish the value of β → characterizes E1_{PV} signal.
- Good control on turning OFF the trap and other lasers.
 - * Atoms in MOT are unpolarized \rightarrow Polarize the atoms in MOT. \leftarrow Next project!

Funding supported by:
NSERC
NRC/TRIUMF
U o Manitoba
U o Maryland

12

Thank

you!

→ Matt Pearson, Andrea Teigelhoefer, Seth Aubin, Gerald Gwinner, Eduardo Gomez, Mukut Kalita, Alexandre Gorelov, John Behr, Luis Orozco, Tim Hucko, Anima Sharma, (Iris Halolivic, Tasanul Morshed, Liang Xie :- not shown in picture).

Back up slides

a) F=5 8s_{1/2} not F=4 detected F=6 F=5 7p_{3/2} F=4F=3 $7s_{1/2} \rightarrow 8s_{1/2}$ F=5 trap 7p_{1/2} repump -4F=5 817 nm $7s_{1/2}$ detection F=4 b) 1 ms 1 mstrap 900 µs repump 1.1 ms 840 µs 817 nm detection 800 µs time OFF

three-level atom. We find that saturation via hyperfine level pumping reduces the transition rate by a factor of $([1 - e^{R/R_{\text{sat}}}]R_{\text{sat}}/R)$, where R is the unsaturated transition rate and R_{sat} is the saturation rate. A similar result

13

Burst of photons for detection

WNPPC 2024

Upper burst

Trap on cycling transition,

(2) Clean F = 5 state \rightarrow Depump atoms,

(3) Excite (506 nm) \rightarrow 8S,

14

- (4) Decay 8S to 7S via 7P,
- (5) Cycling transition (upper burst).

Lower burst

- (1) Trap on cycling transition,
- (2) Clean F = 4 state \rightarrow Repump atoms,
- (3) Excite (506 nm) \rightarrow 8S,
- (4) Decay 8S to 7S via 7P,
- (5) Cycling transition (lower burst).

15

Atomic structure factor from theory (K_{PV}) Weak charge (Q_W) : Our ultimate goal to test the Standard Model.

 $E\mathbf{1}_{PV} = \mathbf{K}_{PV} \mathbf{Q}_{W}$

Qweak Collaboration, Nature 557, 207–211 (20

Francium trapping facility

16

♦ No stable isotope → Use a radioactive beam facility → cool and trap atoms in magneto optical trapping (MOT) → suspend 10^5 Fr atoms.

