

Testing and Characterization of SuperCDMS HV Detectors at CUTE

Tyler Reynolds

On behalf of the SuperCDMS Collaboration

supercdms.slac.stanford.edu

An introduction to SuperCDMS

- Direct detection of dark matter
 - Focusing on WIMPs with mass 1-10 GeV/c²
 - Also sensitive to dark photons, ALPs, etc.
- 2 km underground at SNOLAB shielding from cosmic rays

An introduction to SuperCDMS

- Four arrays of detectors ("towers")
 - Six detectors per tower
- Two materials for rate complementarity
 - 18 germanium (Ge)
 - 6 silicon (Si)
- Two detector designs
 - 12 low background detectors ("iZIP")
 - 12 low threshold detectors ("HV")

An introduction to SuperCDMS

- Four arrays of detectors ("towers")
 - Six detectors per tower
- Two materials for rate complementarity
 - 18 germanium (Ge)
 - 6 silicon (Si)
- Two detector designs
 - 12 low background detectors ("iZIP")
 - 12 low threshold detectors ("HV")

The star of this show!

HV Detectors

- Transition edge sensors measure phonon energy from energy depositions in detector crystals
- Neganov-Trofimov-Luke effect: crystal bias voltage accelerates electron-hole pairs, which shed phonons and cause gain in phonon signal

$$E_t = E_R + n_{eh} eV_b$$

- 12 channels, 6 per side
 - 2 outer ring channels for fiducialization
 - Side 2 rotated 120° with respect to side 1 for position reconstruction

Why Tower Testing?

- Towers all delivered underground recently
- First chance to operate these detectors in deep underground environment
 - Noise performance in low background environment
 - Operation of detectors with high voltage for extended periods
 - First campaign for calibrating detectors
 - Develop operating procedures

CUTE @ SNOLAB

- Class-300 clean room for detector installation
- Background < 10 dru
 - Water tank and lead as shielding
 - Drywell purged with low-radon air
- Dilution refrigerator
 - Base temperature: 13 mK
- Payload: tower 3

Analysis of data

- Data taken Nov. 10, 2023 to present day
- Optimum filter as energy estimator
 - Fit to raw pulses in Fourier domain
 - Fitted pulse amplitude \propto enegy
- Reject pulses with unexpected shapes (non-particle sources, event pileups, etc.)
- No fiducial volume cut coming soon

Ge Calibration

- ²⁵²Cf neutron source
 - $^{70}\text{Ge} + n \rightarrow ^{71}\text{Ge}$
- Electron-capture decay: $^{71}Ge + e \rightarrow ^{71}Ga + v_e$
 - K-shell: 10.3 keV
 - L-shell: 1.3 keV
 - M-shell: 160 eV
- 3 days live-time shown here

Si Calibration

- Compton scattering with ¹³³Ba
 - Scattering cross section decreases below atomic binding energies (Compton steps)

E_{γ} / keV	E _{CE} / keV			label	<i>E</i> _{CS} / keV
356 81	207.3 19.5	·	Ge	K 1s L ₁ 2s L ₂ 2p _{1/2}	11.10 1.42 1.25
79 53 <i>Ref.: https://</i>	18.7 9.1 Inds.iaea.org		Si	K 1s L ₁ 2s L ₂ 2p _{1/2}	1.84 0.15 0.10
Stefan Zatschler			Ref.: https://xdb.lbl.gov		

- 4 days live-time shown here
- (Red "fit" line only to guide the eye)

Ba calibration for Tower 3 Detector 2 at 0V (preliminary data quality cuts)

Conclusion

- Data taking and analysis still ongoing!
 - Expected end of testing in mid-March
- Successfully demonstrated stable operation of HV detectors
- Ge detectors have been calibrated with electron capture peaks
- Si detector calibration moving ahead K step seen, looking for the L step
- Stay tuned for more results!

Backup Slides

T. Reynolds / February 16, 2024 / WNPPC

