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An introduction to SuperCDMS

• Direct detection of dark matter
• Focusing on WIMPs with mass 1-

10 GeV/c2

• Also sensitive to dark photons,
ALPs, etc.

• 2 km underground at SNOLAB –
shielding from cosmic rays
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2 km



An introduction to SuperCDMS

• Four arrays of detectors 
(“towers”)
• Six detectors per tower

• Two materials for rate 
complementarity
• 18 germanium (Ge)
• 6 silicon (Si)

• Two detector designs
• 12 low background detectors 

(“iZIP”)
• 12 low threshold detectors (“HV”)
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The star of this show!



HV Detectors
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• Transition edge sensors measure 
phonon energy from energy 
depositions in detector crystals

• Neganov-Trofimov-Luke effect: crystal 
bias voltage accelerates electron-hole 
pairs, which shed phonons and cause 
gain in phonon signal

• 12 channels, 6 per side
• 2 outer ring channels for fiducialization
• Side 2 rotated 120o with respect to side 1 

for position reconstruction

χ χ

Ge/Si

𝐸𝑡 = 𝐸𝑅 + 𝑛𝑒ℎ𝑒𝑉𝑏



Why Tower Testing?

• Towers all delivered underground recently

• First chance to operate these detectors in deep underground 
environment
• Noise performance in low background environment

• Operation of detectors with high voltage for extended periods

• First campaign for calibrating detectors

• Develop operating procedures
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CUTE @ SNOLAB

• Class-300 clean room for 
detector installation

• Background < 10 dru
• Water tank and lead as shielding

• Drywell purged with low-radon air

• Dilution refrigerator
• Base temperature: 13 mK

• Payload: tower 3
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Analysis of data

• Data taken Nov. 10, 2023 to 
present day

• Optimum filter as energy 
estimator
• Fit to raw pulses in Fourier domain
• Fitted pulse amplitude ∝ enegy

• Reject pulses with unexpected 
shapes (non-particle sources, 
event pileups, etc.)

• No fiducial volume cut – coming 
soon
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Ge Calibration

• 252Cf neutron source
• 70Ge + n → 71Ge

• Electron-capture decay: 
71Ge + e → 71Ga + νe

• K-shell: 10.3 keV

• L-shell: 1.3 keV

• M-shell: 160 eV

• 3 days live-time shown here
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Si Calibration

• Compton scattering with 133Ba
• Scattering cross section decreases below 

atomic binding energies (Compton steps)

• 4 days live-time shown here

• (Red “fit” line only to guide the eye)
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• Data taking and analysis still ongoing!
• Expected end of testing in mid-March

• Successfully demonstrated stable operation of HV detectors

• Ge detectors have been calibrated with electron capture peaks

• Si detector calibration moving ahead – K step seen, looking for the L 
step

• Stay tuned for more results!

Conclusion
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