SuperCDMS Compton step calibration study

SuperCDMS collaboration

Ata Sattari

WNPPC

2024

Direct search for dark matter

Goal:

• Observe or reject dark matter models.

Procedure:

- Dark matter model.
- Background model.
- Experiment data.
- A statistical test.
- Any indication for dark matter in data?

First need detector calibration.

What is calibration

- Choose calibration sources with signatures at known energies.
- Identify the signatures in data.
- Extract the calibration function.

Function(Height) = Energy

Final goal:

Calibration methods

Energies		Low (few eV)	Intermediate (up to 10keV)	
Procedure		Optical photons	Compton steps	Intrinsic activation lines
Ge	HV (~10eV resolution)	\mathbf{X}	×	
Si	HV (~10eV resolution)			
	HVeV (~eV resolution)		?	
 Today: Si-HVeV is under investigation. Future: Si-HV is the final goal. 				

HVeV, 1x1 cm^2, ~ 1g

HV, R = 10 cm, ~1kg

Silicon L-shell steps

Compton steps:

- Irradiate with O(100) keV gamma rays to produce Compton scatters.
- Electromagnetic interactions.
- The binding energy of the electron limits the minimum required energy for scattering.
- Scattering **probability** ∝#**accessible electrons**.

Right: L-step simulations, 2S and 2P steps.

L-shell calibration

- 1. Need a step detection system.
- 2. Perform simulations.
- 3. Take data.
- 4. Compare simulation to data.

Black line: **FEFF** simulation. **Blue** line: **Analytical model** fitted to simulations.

L-shell simulations

Different simulation packages:

- 1. Geant4 simulations:
 - Based on impulse approximation for E&M scatters.
 - Not trustworthy near Compton steps.
 - Monte Carlo based.
- 2. FEFF simulation:
 - No impulse approximation.
 - Deviates from Geant4 simulations.
 - Ab initio calculation of cross section.

Impulse approximation:

- Ignore the **external potential** on the photoelectron **during the scattering** process.
- Valid when: Transferred energy >> Binding energy.
- In other words: Scattering **time scale** << **Atomic response**.

Ata Sattari(UofT)

FEFF simulations

FEFF calculations:

- Model the external potential on the photoelectron.
- Thus, need the arrangement of atoms. (Si crystal)
- And a target atom. (Pink dot)
- Each electron shell -> Separate Calculation.

Cross section **oscillation** in FEFF: **Constructive** and **destructive interference** patterns

of the **photoelectron** wave **depending** on **wavelength**

and **atomic spacing** (top right).

Compton calibration data

Compton step Calibration data:

- Facility: NEXUS at Fermilab.
- Overburden: 100m.
- Detectors: Si-HVeV prototype/R&D.

• Calibration source: Cs-137 (662keV gamma rays).

Next steps

- Compton step analysis for HVeV detectors is going through SuperCDMS internal review. (Oops, no data today!)
- Looking forward to use the developed

calibration scheme for HV detectors.

R = 10cm, H=3cm Silicon or germanium ~1kg

Thanks!

Backup

WIMP direct detection

Cryogenic semiconductor detectors:

- Assuming known backgrounds.
- More exposure->Lower cross section.
- More sensitive detector -> Lower mass.

First need detector calibration.

Silicon absorption length

L-Steps: 100eV, 150eV

Geant4 geometry

