

Study of the ¹⁹⁸Hg(d,d') Inelastic Scattering Reaction

Sally Valbuena

Department of Physics University of Guelph, Ontario

WNPPC February 2024

MOTIVATION

WNPPC 15/02/2024

MOTIVATION

MOTIVATION

SCHIFF MOMENT

Lowest-order observable EDM for a neutral atom in its ground state

$$\mathbf{S} = \frac{1}{10} \left(\int e\rho(\mathbf{r}) r^2 \mathbf{r} d^3 \mathbf{r} - \frac{5}{3} \mathbf{d} \frac{1}{Z} \int \rho(\mathbf{r}) r^2 d^3 \mathbf{r} \right), \qquad \mathbf{d} = \frac{1}{10} \left(\int e \mathbf{r} \rho(\mathbf{r}) d^3 \mathbf{r} \right)$$

[4]

From E.T. Rand.

SOLID ANGLE

TARGET

Q3D magnetic spectrograph at MLL

- Target: ${}^{198}Hg{}^{32}S$ (thickness ~ $40 95\mu g/cm^2$)
- Mounted to a target ladder.
- MLL's target ladder hold up five target.

From C. Burbadge.

Q3D

Deuterons travel in a circular path:

$$F = qvB = m\frac{v^2}{R},$$
$$R = \frac{mv}{qB},$$

PARTICLE IDENTICATION

376

ELASTIC SCATTERING CROSS SECTIONS

Experimental cross section measurements:
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{lab}} = \frac{N_{\text{C}}}{N_{\text{t,eff}}N_{\text{b}}\Omega LT_{\text{DAQ}}LT_{\text{DET}}} \times 10^{31} \left[\frac{\text{mb}}{\text{sr}}\right]$$

Optical potential by An and Cai [7]:

$$V(r) = -Vf_r(r) - iW_v f_v(r) + i4a_s W_s \frac{df_s(r)}{dr} + \lambda_\pi^2 \frac{V_{\rm so} + W_{\rm so}}{r} \frac{df_{\rm so}(r)}{dr} \vec{\sigma} \cdot \vec{l} + V_C(r)$$

WNPPC 15/02/2024

DEUTERON INELASTIC SCATTERING

- 1. National nuclear data center. https://www.nndc.bnl.gov/ensdf/.National nuclear data center. https://www.nndc.bnl.gov/ensdf/.
- 2. J.M. Pendlebury and E.A. Hinds. Particle electric dipole moments. 2000. <u>https://doi.org/10.1016/</u> <u>S0168-9002(99)01023-2</u>
- 3. E.T. Rand. Investigation of the E2 and E3 matrix elements in ²⁰⁰Hg using direct nuclear reactions. PhD dissertation, University of Guelph, 2015.
- 4. T. E. Chupp, P. Fiernlinger, M.J. Ramsery-Musolf and J.T. Singh. Electric dipole moments of atoms, molecules, nuclei and particles.
- 5. S. M. Wong. Introductory Nuclear Physics. Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
- P.E. Garret, E. T. Rand, A. Diaz Varela, G.C. Ball, V. Bildstein, T. Faestermann, B. Hadinia, R. Hertenberger, D. S. Jamieson, B. Jigmeddorj, K. G. Leach, C. E. Svensson, and H.-F. Wirth. Direct reactions for nuclear structure required for fundamental symmetry tests. DOI: 10.1051/epjconf/201612303003, 2016.
- H. An and C. Cai. Global deuteron optical model potential for the energy range up to 183 MeV. Physical Review C, 73(054605), May 2006.
- 8. J. Bojowald, H. Machner, H. Nann, M. Oelert, M. Rogge, and P. Turek. Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. Physical Review C, 38(3), September (1988).
- W. Daehnick, J. Childs, and Z. Vrcelj. Global optical model potential for elastic deuteron scattering from 12 to 90 Mev. Physical Review C, 21(number 6), June 1980.
- Y. Han, Y. Shi, and Q. Shen. Deuteron global optical model potential for energies up to 200 MeV. Physical Review C, 74(044615), October 2006.

THANK YOU FOR THE ATTENTION

QUESTIONS?

BACKUP SLIDES

DATA COLLECTED FOR $^{198}Hg(d, d')^{198}Hg$ **REACTION**

Beginning date of Experiment	Momentum Bite	Number of Runs
January 23, 2014	730, 750	46
	1730, 1760	11
	3130, 3160	15
December 17, 2016	700	14
December 17, 2016 ${}^{138}Ba(d, d')$ data-Solid angle	500	6
July 14, 2017	750	8
July 24, 2017 ${}^{136}Ba(p, P)$ data-Solid angle	400	5

UNIVERSITY & GUELPH

SOLID ANGLE

PEAK FITTING

WNPPC 15/02/2024

$$\begin{aligned} STR_{\text{Coul}} &= M(E\lambda) \\ &= (-1)^{\frac{I-I'+|I-I'|}{2}} \langle I' \| M(E\lambda) \| I \rangle \\ &= (-1)^{\frac{I-I'+|I-I'|}{2}} \sqrt{(2I+1)B(E\lambda; I \to I')} \end{aligned}$$

$$\begin{aligned} STR_{\text{Nuc}} &= \text{RDEF}\left(\lambda; I \to I'\right) \\ &= (-1)^{\frac{I-I'+|I-I'|}{2}} \left\langle I' \| \delta_{\lambda} \| I \right\rangle \\ &= (-1)^{\frac{I-I'+|I-I'|}{2}} \sqrt{2I+1} \left\langle IK\lambda 0 \mid I'K \right\rangle \beta_{\lambda} R_0 \end{aligned}$$

What is an EDM?

Neutron Electric Dipole Moment

A bar magnet is an example of a "magnetic dipole" with a north pole at one end and a south pole at the other. Although the neutron has no net electric charge, it is made of positive and negative quarks. If the positive charges were slightly to one side and the negative charges were slightly to the other, it would create an "electric dipole". The "electric dipole moment", or EDM, is the product of the electric charges and the distance between them. The neutron EDM is usually given in e-cm, the electronic charge times the distance in cm.

Why measure the Neutron EDM?

Universe

WNPPC 15/02/2024

> Increased electric polarizability: a molecule or an atomic nucleus with octuple collectivity.

Specie	d 95% u.l. (e cm)			
Paramagnetic Systems				
Xe^m	3.1×10^{-22}			
Cs	1.4×10^{-23}			
	1.2×10^{-25}			
	2×10^{-5}			
	$2.6 \times 10^{-7} \ \mu_N R C_s$			
Tl	1.1×10^{-24}			
	$1.9 imes 10^{-27}$			
YbF	1.2×10^{-27}			
ThO	$9.7 imes 10^{-29}$			
	$6.4 imes 10^{-9}$			
HfF^+	1.6×10^{-28}			
Diamagnetic System				
^{199}Hg	$7.4 imes 10^{-30}$			
^{129}Xe	$6.6 imes 10^{-27}$			
225Ra	1.4×10^{-23}			
TIF	6.5×10^{-23}			
n	$3.6 imes 10^{-26}$			
Particle Systems				
μ	1.8×10^{-19}			
τ	3.9×10^{-17}			
Λ	1.6×10^{-16}			

[2],[3] [4]

Optical potential by An and Cai [7]:

$$V(r) = -Vf_r(r) - iW_v f_v(r) + i4a_s W_s \frac{df_s(r)}{dr} + \lambda_\pi^2 \frac{V_{\rm so} + W_{\rm so}}{r} \frac{df_{\rm so}(r)}{dr} \vec{\sigma} \cdot \vec{l} + V_C(r)$$

Saxon-Woods form factor:

$$f_i(r) = \left\{ 1 + \exp[\frac{(r - r_i A^{1/3})}{a_i}] \right\}^{-1}$$

Parameter	An and Cai [1]	Bojowald et al.	Deehnick, Childs	Han, Shi
		[2]	and Vrcelj [3]	and Shen [4]
$r_C ~({\rm fm})$	1.303000	1.300000	1.3000	1.6980
$V_r ~({ m MeV})$	95.240100	95.667800	94.8586	86.336100
r_r (fm)	1.150670	1.180000	1.170000	1.174000
$a_r (\mathrm{fm})$	0.792439	0.839997	0.746400	0.809000
$W_V (MeV)$	2.472400	0.000000	0.603400	3.043564
$r_V ~({\rm fm})$	1.322100	-	1.325000	1.563000
$a_V ~({ m fm})$	0.272200	-	0.937993	0.962281
$W_S (MeV)$	10.156800	13.861600	12.168600	10.892290
$r_S~({ m fm})$	1.360080	1.270000	1.325000	1.328000
a_s (fm)	0.892366	0.890398	0.937993	0.727281
V_{SO} (MeV)	1.778500	3.000000	3.346000	1.851500
r_{SO} (fm)	0.972000	1.001480	1.070000	1.234000
a_{SO} (fm)	1.011000	1.001480	0.660000	0.813000
W_{SO} (MeV)	0.000000	0.000000	0.000000	-0.103000

appropriate to express the combination of contributions to a measured atomic EDM for paramagnetic systems, diamagnetic systems, and nucleons as

$$d_i = \sum_j \alpha_{ij} C_j,\tag{9}$$

where *i* labels the system, and *j* labels the specific lowenergy parameter (*e.g.*, d_e , C_S , *etc.*). The $\alpha_{ij} = \partial d_i / \partial C_j$

imental results. In the global analysis, paramagnetic systems are used to set limits on the electron EDM d_e and the nuclear spin-independent electron-nucleus coupling C_S . Diamagnetic systems set limits on four dominant parameters: two pion-nucleon couplings $(\bar{g}_{\pi}^{(0)}, \bar{g}_{\pi}^{(1)})$, a specific isospin combination of nuclear spin-dependent couplings, and the "short distance" contribution to the

Search for EDM in Atoms with octuple-deformed nuclei

 \blacktriangleright EDM = 0 if there is invariance under P and T

• d same orientation of I angular momentum, d must change sign the same way under P and T

d=q**r**

$$\begin{cases} \mathbf{d} \xrightarrow{P} - \mathbf{d} \\ \mathbf{I} \xrightarrow{P} \mathbf{I} \\ \mathbf{d} \xrightarrow{P} \mathbf{d} \\ \mathbf{d} \xrightarrow{T} \mathbf{d} \\ \mathbf{I} \xrightarrow{T} - \mathbf{I} \end{cases}$$

[1]

I=rxp

All particle and atomic EDMs are odd under P and T symmetry

Schiff Moment $\overrightarrow{S}_{int} = \frac{1}{10} [\overrightarrow{O_0} - \frac{5}{3} \overrightarrow{d_0} \langle r^2 \rangle_{ch}]$

• Large nuclear gs EDMs (large Schiff moments) \longrightarrow The action of a P- and T- violating \hat{V}_{PT}

$$S \equiv \left\langle S_z \right\rangle = \sum_{i \neq 0} \frac{\left\langle \Psi_0 | S_z | \Psi_i \right\rangle \left\langle \Psi_0 | \hat{V}_{PT} | \Psi_i \right\rangle}{\Delta E} + \dots$$

In the laboratory frame:
$$S \approx -2 \frac{I}{I+1} \hat{S}_{int} \frac{\left\langle \Psi^+ | \hat{V}_{PT} | \Psi^- \right\rangle}{\Delta E}$$

• The most direct ways to measure E2 and E3 matrix

[3]

• WEAK INTERACTION VIOLATES C, P and T transformations.

$$\text{Charge Conjugation} \longrightarrow |p\rangle \underset{C}{\longrightarrow} (-1)^{1/2+1/2} |\bar{p}\rangle = -|\bar{p}\rangle \\ |n\rangle \underset{C}{\longrightarrow} (-1)^{1/2+1/2} |\bar{n}\rangle = +|\bar{n}\rangle$$

• **CP violation** \longrightarrow First observed in the decay of K^0 meson.

$$K_L^0 \rightarrow \begin{cases} \pi^{+,+} e^- + \bar{\nu}_e \\ \pi^- + e^+ + \nu_e \end{cases}$$

$$CP\left|K^{0}\right\rangle = \left|\bar{K^{0}}\right\rangle$$

CP violation - The standard model of elementary particle suggests that when the universe was less than 10-12 sec old, the condition was ripe for the production of more matter than antimatter with CP violation to provide the mechanism for different reaction rate (to produce matter and antimatter).

WNPPC 15/02/2024

WEAK INTERACTION VIOLATES C, P and T transformations.

Parity
$$\longrightarrow$$
 $(x, y, z) \xrightarrow{P} (-x, -y, -z)$

Violation of Parity $\longrightarrow K^+ \rightarrow \begin{cases} \pi^+ + \pi^0 \\ \pi^+ + \pi^- + \pi^+ \end{cases}$

 β^- decay of ${}^{60}Co \longrightarrow$ First evidence that confirmed parity nonconservation.

 $^{60}_{27}\mathrm{Co}
ightarrow ^{60}_{28}\mathrm{Ni} + e^- + ar{
u}_e + 2\gamma$

From commons.wikimedia.org

UNIVERSITY SGUELPH ELECTROMAGNETIC TRANSITIONS

Reduced transition probabilities in terms of intrinsic moments

$$\cos \theta_{cm} = \cos \theta_{lab} [x \cos \theta_{lab} + \sqrt{1 - x^2 \sin^2 \theta_{lab}}] - x$$

1/2

 $x = \frac{m_p}{m_t}$ Elastic scattering $x = \left[\frac{m_a m_b}{m_A m_B} \frac{1}{1 + \frac{Q}{E_{cm}}}\right]^{1/2}$ Inelastic scattering

For spherically symmetric potential:

$$f(\theta) \cong -\frac{2m}{\hbar^2 K} \int_0^\infty dr \ r_o V(r_o) \sin(Kr_0)$$
$$f(\theta) = -\frac{2mV_o}{\hbar^2 \mu(\mu^2 + K^2)}$$

In the limit $\mu \rightarrow 0$, the Yukawa potential tends to the Coulomb potential $V(r) \sim \frac{Z_1 Z_2 e^2}{r}$

$$\frac{d\sigma}{d\Omega} = \frac{Z_1 Z_2 e^4}{16E^2 \sin^4 \frac{\theta}{2}}$$

In MKSA units:

$$\frac{d\sigma}{d\Omega}\Big)_{\text{Rutherford}} = \frac{d\sigma}{d\Omega} = \frac{1}{4\pi\epsilon_o} \frac{Z_1 Z_2 e^4}{16E^2 \sin^4 \frac{\theta}{2}}$$
$$= 17.408 \frac{1}{\sin^4 \frac{\theta}{2}} \text{ mb/sr.}$$

WNPPC 15/02/2024

JNIVERSITY **GUELPH** TARGET THICKNESS CORRECTION

Beginning date of Experiment	Nominal Target Thickness	
	$ ho t \; (\mu g/cm^2)$	
January 23, 2014	95	
December 17, 2016	70	
July 24, 2017	40	

DIFFERENTIAL CROSS SECTION AS RATIO TO RUTHERFORD-FRESCO

WNPPC 15/02/2024

DETECTOR

WNPPC 15/02/2024