Enhancing Measurement Precision in PVES Experiments:

The Impact of Bayesian Analysis on the Results of the Qweak and MOLLER Experiments

Elham Gorgannejad
 Dr. Wouter Deconinck

Winter Nuclear and Particle Physics Conference, 2024

Parity Violating Electron Scattering (PVES) Experiment

SLAC

https://www.cnet.com/pictures/slac-a-2-mile-particle-accelerator-next-to-stanford/
https://bateslab.mit.edu
Jefferson Lab

https://en.wikipedia.org/wiki/Thomas Jefferson National Accelerator Facility

Mainz

MESA accelerator layout
https://www.mesa.uni-mainz.de/eng/

Parity Violating Asymmetry

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \quad \nLeftarrow A_{P V} \text { arises from the interference of the weak and electromagnetic amplitudes }
$$

1.13 GeV Longitudinally polarized Electron Beam Measure $A_{P V}$ in Electron-Proton Scattering

$$
\begin{aligned}
& 11 \mathrm{GeV} \text { Longitudinally Polarized Electron Beam } \\
& \text { Measure } A_{P V} \text { in Electron-Electron Scattering }
\end{aligned}
$$

- Electron polarization is determined by the polarization of the incident laser light
> Polarization of the laser light is controlled by the polarity of the voltage across a Pockels cell
> Pockels cell determines the sign of the longitudinal polarization of the emitted electron bunch
> Injector to provide Longitudinally polarized electrons
> Magnets in the arcs bend the beam from one Linac arm to the other
> Liquid Helium for ultra-low-temperature

$$
\begin{aligned}
& \theta_{P(L)}=-19.7^{\circ} \pm 1.9^{\circ}(108 \text { hours of data-taking }) \\
& \theta_{P(L)}=92.2^{\circ} \pm 1.9^{\circ} \quad(4.3 \text { hours of data-taking })
\end{aligned}
$$

$$
\begin{array}{|l}
\theta_{P(L)}=0^{\circ} \pm 1^{\circ}(7430 \text { hours of data-taking }(90 \%)) \\
\theta_{P(L)}=90^{\circ} \pm 1^{\circ}(826 \text { hours of data-taking }(10 \%))
\end{array}
$$

Qweak Experiment (Completed)

MOLLER Experiment (2025)

Qweak Experiment (Completed)

MOLLER Experiment (2025)

Note: In both the Qweak and MOLLER experiments, charged pions are an important source of background noise. By tracking these pions, we can better understand and correct the background in our measurements.

Bayesian Analysis

Bayesian Analysis properties:

> Using probability statements
> Treating the parameters in a statistical model as random
> Using a prior distribution to quantify our knowledge about the parameter
> Using the conditional distribution of parameters, given the data to update our prior knowledge
> Update from the prior to the posterior via the Bayes theorem
$P(\theta \mid y)=\frac{P(y \mid \theta) P(\theta)}{P(y)} \quad$ Bayes' rule
> $P(\theta \mid y)=$ Probability of the model parameters (θ) conditional on the data $(y)=$ Posterior distribution
> $P(y \mid \theta)=$ Probability of the data (y) given the model parameters $(\theta)=$ Likelihood function
> $P(\theta)=$ Probability of model parameters $=$ Prior distribution
> $P(y)=$ Normalizing factor

Posterior distribution ~ Likelihood function * Prior distribution

Experiment

Asymmetry measurements in the experiment, per detector, for 2 data sets ((8) mixed and (8) transverse measurements)

Analysis Inputs

Feed the measured asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Extract Asymmetry components $\left(A_{e L}, A_{p i L}, A_{e T}, A_{p i T}\right)$

Fitting to the Model

Substitute Asymmetry components in the formula and regenerate the asymmetry values (Fitted Asymmetry)

Analysis Steps: Qweak Experiment

Experiment

Analysis Steps: Qweak Experiment

Experiment

Asymmetry measurements in the experiment, per detector, for 2 data sets ((8) mixed and (8) transverse measurements)

Analysis Inputs

Feed the measured asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Extract Asymmetry components $\left(A_{e L}, A_{p i L}, A_{e T}, A_{p i T}\right)$

Fitting to the Model

Substitute Asymmetry components in the formula and regenerate the asymmetry values (Fitted Asymmetry)

Analysis Inputs

$$
\begin{array}{r}
\mathrm{A}_{\text {measured }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]+ \\
\left.f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]\right\}
\end{array}
$$

Analysis Outputs

Analysis Steps: Qweak Experiment

Experiment

Asymmetry measurements in the experiment, per detector, for 2 data sets ((8) mixed and (8) transverse measurements)

Analysis Inputs

Feed the measured asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Extract Asymmetry components $\left(A_{e L}, A_{p i L}, A_{e T}, A_{p i T}\right)$

Fitting to the Model
Substitute Asymmetry components in the formula and regenerate the asymmetry values (Fitted Asymmetry)

Fitting to the Model

$$
\begin{array}{r}
\mathbf{A}_{\text {Fitted }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]+ \\
\left.f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]\right\}
\end{array}
$$

Analysis Steps: MOLLER Experiment

Simulations

Mock asymmetry in the experiment, per detector, for 2 data sets (28 mixed and transverse measurements for the pion detector and 84 for the main detector)

Analysis Inputs

Feed mock asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Simulations

$$
\begin{array}{r}
\mathbf{A}_{\text {Simulated }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times C_{e} \times \sin \left(\theta_{P}^{j}\right)\right]+ \\
\left.f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times C_{p i} \times \sin \left(\theta_{P}^{j}\right)\right]\right\}
\end{array}
$$

Simulated Asymmetry (Pion Detector-Mixed DataSet)

Analysis Steps: MOLLER Experiment

Analysis Steps: MOLLER Experiment

Simulations

Mock asymmetry in the experiment, per detector, for 2 data sets (28 mixed and transverse measurements for the pion detector and 84 for the main detector)

Analysis Inputs

Feed mock asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Analysis Inputs

$$
\begin{array}{r}
\mathbf{A}_{\text {Mock }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times C_{e} \times \sin \left(\theta_{P}^{j}\right)\right]+ \\
f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times C_{p i} \times \sin \left(\theta_{P}^{j}\right]\right\}
\end{array}
$$

Analysis Outputs

Analysis Steps: MOLLER Experiment

Simulations

Mock asymmetry in the experiment, per detector, for 2 data sets (28 mixed and transverse measurements for the pion detector and 84 for the main detector)

Analysis Inputs

Feed mock asymmetries, dilution factors, and polarization angles in the model

Analysis Outputs

Fitting to the Model

$$
\begin{aligned}
& \mathrm{A}_{\text {Fitted }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times C_{e} \times \sin \left(\theta_{P}^{j}\right)\right]+ \\
& \left.f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times C_{p i} \times \sin \left(\theta_{P}^{j}\right)\right]\right\}
\end{aligned}
$$

Bayesian Analysis: MOLLER Experiment

Fitted Asymmetry vs Simulated Asymmetry (Pion Detector-Mixed DataSet)

Bayesian Analysis: MOLLER Experiment

Conclusion

> Bayesian analysis was introduced as an alternative to Frequentist methods for analyzing data from PVES experiments.
> The method has been applied using two types of inputs: real and mock.
> In the Qweak experiment, there is a good level of agreement between the fitted values and the measured values, except for detector 7 .
$>$ In the MOLLER experiment, Bayesian analysis is capable of correcting the values based on the model, even when the inputs are noisy.

Next steps

$>$ Address the issue in the Qweak experiment
$>$ Evaluate the method under various assumptions in the MOLLER experiment

Team Members:

$>$ Elham Gorgannejad (U. Manitoba)
> Dr. Wouter Deconinck (U. Manitoba)
> Dr. David Armstrong (William \& Mary)

Funding sources:

> Natural Sciences and Engineering Research Council of Canada (NSERC)
> Canada Foundations for Innovation (CFI)
> Canadian Institute of Nuclear Physics (CINP) graduate fellowship

Thank you!

Backup slides

Relationship between the Polarization and Parity Violating Asymmetry

The parity-violating asymmetry can be defined as:
$A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}$
where:

- σ_{R} is the cross-section for the scattering of right-handed (positive helicity) polarized electrons,
- σ_{L} is the cross-section for the scattering of left-handed (negative helicity) polarized electrons.

The cross-sections σ_{R} and σ_{L} represent the probabilities of scattering for electrons with right-handed and left-handed polarization states, respectively. This asymmetry arises due to the interference between the electromagnetic (which conserves parity) and the weak (which violates parity) interactions. The weak interaction will cause a small difference in the scattering probabilities for right- and left-handed polarized electrons, leading to a non-zero value of $A_{P V}$.

Longitudinal Pion asymmetry varies as a sine function of phi (detectors placement and the geometries or the polarization variation?!)

Transverse Pion asymmetry varies as a cosine function of phi in the azimuthal plane

The electron longitudinal asymmetry is a constant value but, because of the impact of the pions, there is a sine wave variation

This kind of variation is because there is a mixture of two electrons in opposite directions. There are different probabilities of the acceptance or rejection of each of the electrons in different detectors

In the presentation, do we need to include the detector displacement in the formula at all? Couldn't assume it was embedded? In the case of the MOLLER experiment(remoll), it is embedded. Is this not the case for the Qweak's simulations?

$$
\begin{aligned}
& \mathrm{A}_{\text {measured }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+C_{e} \times \sin \left(\theta_{P}^{j}\right)\right]+ \\
& \qquad f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+C_{p i} \times \sin \left(\theta_{P}^{j}\right]\right\} \\
& C_{e}=A_{e T V} \times \sin \left(\varphi_{P}^{j}\right)+A_{e T H} \times \cos \left(\varphi_{P}^{j}\right) \\
& C_{p i}=A_{p i T V} \times \sin \left(\varphi_{P}^{j}\right)+A_{p i T H} \times \cos \left(\varphi_{P}^{j}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{A}_{\text {measured }}^{i j}=\left(1-f_{p i}\right) \times\left[A_{e L} \times \cos \left(\theta_{P}^{j}\right)+A_{e T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]+ \\
\left.f_{p i} \times\left[A_{p i L} \times \cos \left(\theta_{P}^{j}\right)+A_{p i T} \times \sin \left(\theta_{P}^{j}\right) \times \sin \phi^{i}\right]\right\}
\end{array}
$$

$$
\text { If } \varphi_{P}^{j}=0
$$

