First Observation of the Production of a *W* Boson in Association with Two Photons in Proton-Proton Collisions at the Large Hadron Collider with the ATLAS Detector

Alessandro Ambler

Supervisor : Professor Brigitte Vachon

Motivation

-

- Probe of non-Abelian **self couplings of the electroweak gauge bosons** in the Standard Model (SM)
 - Sensitive to anomalous Quartic Gauge Couplings (aQGC)
 - Can set limits within Effective Field Theories (EFT)

- **Triboson final states are rare** and some are only now becoming accessible at the LHC
 - Many first observations of triboson processes with previous round of data-taking
 - WYY, WZy,and WWy
 - Wγγ is 4000× rarer that the Higgs!
- Backgrounds to SM processes like $WH(\rightarrow\gamma\gamma)$ that will become accessible during next data-taking period and beyond

Standard Model Production Cross Section Measurements

Status: October 2023

Ref. : ATL-PHYS-PUB-2023-039

Alessandro Ambler (McGill University)

Event Selection

- $pp \rightarrow W\gamma\gamma$ event selection :
- Electron and muon decay channels
- Two photons
- Missing transverse energy
 - From momentum carried off by the non-interacting neutrino
- Veto on jets containing *b*-hadrons
 - To reduce top quark background
- Cuts to reduce *Zγ* background
 - $m(l\gamma), m(l\gamma\gamma), \text{ and } p_T(l\gamma\gamma)$

Aux. fig. 6 and 7 in: Phys. Lett. B 848 (2024) 138400

Signal and Backgrounds

- Several types of *Wyy* signal
- Photons can be produced via : _
 - Quartic *WWyy* couplings _
 - Triple WWy couplings _
 - Initial and final state radiation
- **Backgrounds**
 - Most crucial part of analysis _
- Irreducible backgrounds simulation
- Reducible backgrounds data-driven

W \overline{p} \overline{q}' W \overline{p} W W W	Contraction of the second seco	γ γ γ γ γ γ
Source	SR	
Ψγγ	410 ± 60	
Non-prompt $j \rightarrow \gamma$	420 ± 50	
Misidentified $e \rightarrow \gamma$	155 ± 11	
Multiboson ($WH(\gamma\gamma)$,	$WW\gamma, Z\gamma\gamma) \qquad 76 \pm 13$	
Non-prompt $j \to \ell$	35 ± 10	
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	
Pileup	10 ± 5	
Total	1136 ± 34	

Table 1 in Phys. Lett. B 848 (2024) 138400

 $\sim\sim\sim\sim\sim$ \overline{W}

Hadronic Fake Photons

- $j \rightarrow \gamma$ fakes : 37% background
 - Jets misidentified as photons
 - Non-prompt photon from neutral hadron decays
- Difficult to simulate :
 - Complex interactions in electromagnetic calorimeter
 - Very low fake rate
- Data-driven estimate :
 - Shapes of $j \rightarrow \gamma$ photon isolation energy :
 - Control regions enhance in fakes
 - Obtained by inverting **identification cuts**
 - Shapes for prompt photon isolation energy
 - taken from simulation
 - Normalization of shapes fit in signal region to extract yield

Aux. fig. 1a in Phys. Lett. B 848 (2024) 138400

Electron to Photon Fakes

- $e \rightarrow y$ fakes : 14% background
 - Inefficiencies in the tracking detectors
 - Mismatched tracks to energy clusters
- Difficult to simulate :
 - Large disagreements between data and simulation
 - Large theoretical uncertainties
- Data-driven estimate :
 - Using $Z \rightarrow e^+e^-$ events
 - ee and ey pairs reconstructed close to m_z
 - $e \rightarrow \gamma$ fake rate = # $e\gamma$ / # ee
 - Fits done to extract signal / background

 $\times 10^3$

300

200

150

100

50

Events / (1.16667

Electron to Photon Fakes

Top-quark background

- Top-quark processes : 3% background
 - *tty*, *tWy* and *tqy* events
 - $t \rightarrow W + b$ branching ratio > 95%
- Reduced by vetoing on b-jets
 - Multivariate algorithms based on shower shape and impact parameter properties
- Normalized in b-jet control region
 - Requiring at least 1 b-jet

Uncertainties

- Systematic Uncertainties :

-	Uncertainties	on	data-driven	estimates

- $j \rightarrow \gamma$ uncertainty leading systematic
- Experimental uncertainties
 - Object trigger, reconstruction, identification, and isolation efficiencies
 - Energy calibration and resolution
 - Integrated luminosity measurement
- Theoretical uncertainties
- Top normalization uncertainties
- *b*-jet tagging efficiency
- Statistical uncertainties on data and simulation
- Analysis is Systematically limited
 - More data in data-driven control regions would drive the overall uncertainty down

Source of uncertainty	Impact [%]
$j \rightarrow \gamma$ data-driven background estimate	12
Photon efficiency	4.5
Other data-driven background estimates	3.5
Background MC theoretical modeling	3.0
Monte Carlo statistics	2.7
Signal MC theoretical modeling	2.6
Jet efficiency and calibration	2.4
Top normalization	2.3
Pileup reweighting	1.6
Muon efficiency and calibration	1.4
$E_{\rm T}^{\rm miss}$ calibration	1.3
Luminosity	1.0
Electron and photon calibration	0.7
Flavor tagging efficiency	0.6
	4-
Systematic	15
Statistical	8.3
Total	17
Total	17

Table 2 in Phys. Lett. B 848 (2024) 138400

Significance Extraction

- Final **fit** done simultaneously in signal region and top control region to constrain top normalization
 - Maximum Likelihood Estimate
 - Parameter of interest : signal strength
 - Systematic uncertainties implemented as nuisance parameters and constrained in final fit

- Expected and observed **significance** of signal over background of **5.6** σ
 - <0.00003% probability excess events are due to statistical fluctuation
 - Passes 50 threshold for **first observation**

- TopCR : Top Control Region
- TopVR : Top Validation Region
- SR : Signal Region

Cross Section Measurement

- Deconvolve the detector acceptance and efficiency from the reconstructed signal :
 - Process is called **unfolding**
- **Cross section** in agreement with **Standard Model predictions**
 - Obtained using most accurate simulations currently available

Fig. 3 in Phys. Lett. B 848 (2024) 138400

Conclusion

- Exciting new first observation of a Standard Model process!
 - $W\gamma\gamma$ observed for the first time with 5.6 σ significance
 - Paper has been published : <u>Phys. Lett. B 848 (2024) 138400</u>
- Next steps :
 - Differential cross section measurement
 - Set limits on **beyond the Standard Model** physics
- Thank you for your attention!
 - Are there any questions?

Fake Leptons

- $j \rightarrow l$ fakes : 3% background
 - Jets misidentified as leptons
 - Non-prompt leptons from hadron decays
- Difficult to simulate :
 - Complex interactions in electromagnetic calorimeter
 - Very low fake rate
- Data-driven estimate :
 - Using $Z(\rightarrow l^+l^-)+j\rightarrow l^- fake$ events
 - $j \rightarrow lfake rate = # Tight / Loose probes$
 - Loose : inverted isolation and impact parameter
 - Background from WZ events subtracted

Pileup Backgrounds

- Pileup : 1% background
 - From events in which one or both photons come from a different proton-proton interaction
- Estimated using converted photons
 - Photons that convert to *e*⁺*e*⁻ **pair** leaving well defined **tracks**
 - Good measurement of their impact parameter

Pileup Background

Alessandro Ambler (McGill University)