Measurement of ${}^{59}Cu(p,\alpha){}^{56}Ni$ reaction rate to constrain the flow

of *v*p-process

Nikhil Bhati Supervisor: Dr. Rituparna Kanungo **WNPPC 2024**

Nuclear Physics Institut canadien de physique nucléaire

vp-process

- After the supernova explosion, intense neutrino flux originates from the cooling of hot PNS.
- These neutrinos interact with the stellar matter present between the surface of the hot PNS and the expanding shock wave.

vp-process

• An end point nuclear cycle "Ni-Cu" was identified which is key to the ability of the vp-process to form heavy elements.

Impact on XRB light curve

 Sensitivity studies shows that the light curve is affected the most if the ⁵⁹Cu(p, α)⁵⁶Ni reaction rate is varied.

Previous Measurements

Randhawa, J. S. et al. (2021). Physical Review C.

Objective

	Gamow peak	Gamow window	
v p-process	2.9 MeV	1.1 – 4.01 MeV	
Type-I XRBs	1.25 MeV	1.1 – 1.4 MeV	

4.64 MeV and 4.16 MeV.

Cross sections from Hauser-Feshbach calculations

IRIS facility - TRIUMF

Ionization Chamber (IC)

Solid Hydrogen Target

- Windowless target
- Energy loss with and without target was used to find the target thickness using

Charged Particle Detectors

- YY1 Silicon strip detector
- CsI(TI) Cesium Iodide Thallium doped detector

Charged Particle Detectors

- YY1 Silicon strip detector
- CsI(TI) Cesium Iodide Thallium doped detector

Excitation spectrum

- Missing mass technique.
- For a given reaction,

 $A + B \longrightarrow C + D$

• The Q-value can be written as,

$$Q = m_A + m_B - m_C - m_D$$

• Missing mass (assume D) is,

$$m_{\rm D} = \sqrt{m_{\rm A}^2 - m_{\rm B}^2 + m_{\rm C}^2 + 2m_{\rm B}(T_{\rm A} + m_{\rm A}) - 2(T_{\rm A} + m_{\rm A} + m_{\rm B})(T_{\rm C} + m_{\rm C}) + 2P_{\rm A}P_{\rm C} \times \cos(\theta_{\rm C})}$$

• Then,

$$Q = m_A + m_B - m_C - (m_D + E_{exc})$$

Preliminary results

Outlook

• ${}^{59}Cu(p,\alpha){}^{56}Ni$ reaction cross-section at 4.64 and 4.16 MeV centre-of-mass energy will allow a direct

comparison to the Hauser-Feschbach based statical model predictions.

• Future measurements to constrain the ${}^{59}Cu(p,\gamma){}^{60}Zn$ reaction rate would be required to further

elucidate the flow in the Ni-Cu cycle.

Acknowledgements

- Supervisor Dr. Rituparna Kanungo
- IRIS group and TRIUMF
- CINP, NSERC and SMU for funding

Canadian Institute of Nuclear Physics Institut canadien de physique nucléaire

Measuring conditions

- IC pressure = 10 T and 19.5 T
- Light particle detector distance = 155 mm
- Heavy particle detector distance = 525 mm
- ⁵⁹Cu beam intensity at IRIS was 3600 pps.
- Measurement time:
 - Beam energy E/A= 9 MeV (12 shifts)
 - Beam energy E/A= 6.7 MeV
 - 10 T IC pressure = 6 shifts
 - 19.5 T IC pressure = 8 shifts

E _{lab.} (A MeV)	No of shifts	Estimated α counts	
9.0	12	~ 1700	1 shift = 8 hour
6.7	14	~ 1300	

- Target Thickness = $50 \ \mu m$
- ⁴⁰Ar stable beam data was also taken for 3 shifts to calibrate detectors.

Target Thickness

Less overlap between states and less energy straggling in

50 um target

Charged Particle Detectors

- YY1 Silicon strip detector
 - 8 sectors and 16 rings
- CsI(TI) Cesium Iodide Thallium doped detector
 - 16 sectors/crystals
- S3 Double sided silicon strip detector (S3d1 and S3d2)
 - 32 sectors and 24 rings

- Radiation transport modeling absent in One zone model.
- It neglects gradients in temperature, density, and

composition, as well as radiative transport and convection.

• ONEZONE assumes nuclear burning at constant pressure P.

• It captures only some aspects of a more complicated situation.

Alpha source:

YY1 Calibration

 $E = g^* (c-p)$

 239 Pu = 5.155 MeV 241 Am = 5.486 MeV 244 Cm = 5.805 MeV

S3 Calibration

Target thickness- measured for a 59Cu

I am using this formula to find the thickness,

$$t = \int_{E_1}^{E_2} \frac{1}{S(E)} dE$$

Where, E₂ = 59Cu beam energy after the target E₁ = 59Cu beam energy before the target i.e. after Ag-foil. S(E) = stopping power of 59Cu particles in the target.

beam with and without target

×10³

100

80

60

40

20

Counts per bin

Without target

With target

300

350

Light Particle Detection

Forward scattering and backward scattering region is shown in green and red, respectively.

Horizontal line shows the threshold energy for alpha particle to be detected in Δ E-E telescope.

Other open channels

 ${}^{60}Zn + \gamma$ ${}^{56}Ni + \alpha$ ${}^{59}Cu + p$ ${}^{58}Ni + 2p$ ${}^{55}Co + p + \alpha$ ${}^{52}Fe + 2\alpha$

Excitation spectrum

- Invariant mass technique
- Consider $A+B \rightarrow C+D$, then Q-value is

 $Q = m_{oA} + m_{oB} - m_{oC} - m_D$

Where m_{oA} , m_{oB} , m_{oC} and m_{oD} are rest masses of the particles.

If its possible to measure the E and p of $\,{}^{56}\!\mathrm{Ni}\,$ it will be

 $m_{oD}c^2 = sqrt (E_D^2 - c^2 p_D^2)$

