

Simulation of Cosmogenic **Backgrounds to nEXO** with **FLUKA**

WNPPC 2024

Regan Ross

What is nEXO?

- A search for $0\nu\beta\beta$ in liquid xenon-136
- Half-life sensitivity reach to 1.35×10^{28} years at a 90% C.L.
- 5000 kg of LXe in a time projection chamber (TPC)

Backgrounds to nEXO

- 1. Intrinsic radioactivity of components
- 2. Radon outgassing

3. Exposure based backgrounds

- During fabrication / transport*
- Steady state (cosmogenic or local activity)

Quantify: Radioassays Measure Rn emanation rates Mitigate: Select radiopure materials

<u>Quantify:</u> Simulations Mitigate: *Post-installation cool-down time Shielding

Cosmogenic Backgrounds

SNOLAB overburden reduces μ flux by 2×10^8 compared to surface

... yet we still anticipate 600^{-1} between ~55 muons per day through the OD 400^{-1} Days/bin $\langle E_{\mu} \rangle \approx 350 \, \text{GeV}$ 200why are they a problem? 30

Cosmogenic Backgrounds

muon spallation:

 $\mu + A \rightarrow n + \dots$

leads to neutron capture:

$$_{54}^{136}$$
Xe + $n \rightarrow \frac{137}{54}$ Xe

producing a signal-like event

$${}^{137}_{54}\text{Xe} \rightarrow {}^{137}_{55}\text{Cs} + e + \bar{\nu}_e, \quad Q_\beta =$$

4173 keV, $T_{1/2} \approx 3.8$ min

Enter stage right **nEXO's Outer Detector**

Uses 125 PMTs to detect muons via Cherenkov light whose spectra are given by the Frank-Tamm formula:

$$N = 2\pi\alpha \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_2}\right) \left(1 - \frac{1}{\beta^2 n^3}\right)$$

For $\langle E_{\mu} \rangle \approx 350$ GeV, $\beta \approx 1$

Average path length and time: $\langle s \rangle \approx 8.6 \text{ m}$ $\langle t \rangle \approx 30 \text{ ns}$ yielding roughly 1.5×10^5 Cherenkov photons per muon in OD

Simulating nEXO's Cosmogenic Backgrounds, R. Ross

Simulation Goals

- Quantify the cosmogenic background Constrain the activation rate of Xe-136
- Characterize the neutron-inducing muons

Simulating nEXO's Cosmogenic Backgrounds, R. Ross

What is FLUKA?

- A Monte Carlo particle simulation package
- Implemented in FORTRAN77 (it's been around for a while)

What are possible outputs?

- Neutron energy, position, direction, generation, muon-parent & attributes
 - Activation Count of Residual nuclei per primary Stopping nuclei
 - Using ENDF σ for 136 Xe(n, γ) 137 Xe
 - By region: either TPC, or everything within OD boundary

Muon Source

Monochromatic? Collimated? Isotropic?

- Zenith angle from Mei and Hime [4] $I(\theta, X) = (I_1 e^{-X/\Lambda_1 \cos \theta} + I_2 e^{-X/\Lambda_2 \cos \theta}) \sec \theta$
- Energy E_{μ} sampled from Gaisser:

$$\frac{dN}{dE_{\mu}d\Omega} \approx 0.14E_0^{-2.7} \left(\frac{1}{1 + \frac{1.1E_{\mu}\cos\theta}{115GeV}} + \frac{0.054}{1 + \frac{1.1E_{\mu}}{8500}}\right)$$

Instantiated on a disk above the OD

An average day of muons @ nEXO

Activation Rates

43.5 years simulated Small ROI

Production rates:

Xe-137— 21.86 atoms/yr Cu-64— 63.46 atoms/yr Cu-66— 13.69 atoms/yr

Simulating nEXO's Cosmogenic Backgrounds, R. Ross

Xe-137 Activation

Activation rates for Xe-137 are consistent with other simulations based on GEANT4

11

Muon Impact Parameters

~150 yr of fluxes

Muon Impact Parameter [m]

_	
<3m	
-	7
1	

Muon Impact Parameters

~150 yr of fluxes

Muon Impact Parameter [m]

<3m	
7	7

Conclusions

- Muons that produce TPC backgrounds traverse the OD we can see them
- Activation rates have been quantified and are consistent with GEANT4
- We don't have to worry about muon-induced showers in surrounding rock

Acknowledgements Thank you for listening!

Thanks are also owed to:

- nEXO Outer Detector Group: Kharusi
- Broader nEXO Collaboration
- WNPPC Organizers

Natural Sciences and Engineering Research Council of Canada

Simulating nEXO's Cosmogenic Backgrounds, R. Ross

Thomas Brunner, Ubi Wichoski, Erica Caden, Al Odian, Samin Majidi, Soud Al

Conseil de recherches en sciences naturelles et en génie du Canada

References

- nEXO Collaboration et al., NEXO: Neutrinoless Double Beta Decay Search beyond 10²⁸ Year Half-Life Sensitivity, J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022).
- 2. S. Al Kharusi, A Water-Cherenkov Muon Veto for the nEXO Neutrinoless Double Beta Decay Experiment, PhD Thesis, McGill University, 2023.
- 3. EXO Collaboration et al., Observation of Two-Neutrino Double-Beta Decay in ¹³⁶Xe with the EXO-200 Detector, Phys. Rev. Lett. 107, 212501 (2011).
- 4. I. Frank and Ig. Tamm, Coherent Visible Radiation of Fast Electrons Passing Through Matter, in Selected Papers, edited by I. E. Tamm, B. M. Bolotovskii, V. Ya. Frenkel, and R. Peierls (Springer, Berlin, Heidelberg, 1991), pp. 29–35.
- 5. D.-M. Mei and A. Hime, Muon-Induced Background Study for Underground Laboratories, Phys. Rev. D 73, 053004 (2006)
- 6. T. K. Gaisser, R. Engel, and E. Resconi, Cosmic Rays and Particle Physics, Second edition (Cambridge University Press, Cambridge, 2016).
- 7. FLUKA collaboration, "New Capabilities of the FLUKA Multi-Purpose Code", Frontiers in Physics 9, 788253 (2022).

Bonus: Cherenkov Photons vs Impact Parameter nEX®

Simulating nEXO's Cosmogenic Backgrounds, R. Ross

