SEARCH FOR EMERGING JETS WITH THE ATLAS DETECTOR AT THE LHC

WINTER NUCLEAR & PARTICLE PHYSICS CONFERENCE

IAN RAMIREZ-BEREND

17 FEBRUARY 2024

ANALYSIS GOAL:

Looking for evidence of Dark-QCD in the form of a unique collider event signature known as 'Emerging Jets'

Active analysis using data collected 2015-2018 (Run II) with the ATLAS detector at the LHC

Aiming to publish results in 2024

ATLAS Work In Progress $\mathcal{L} = 139 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}$ Run II Simulation

THE EMERGING JET SIGNATURE

- *X_d*: TeV-Scale Dark Mediator
- *Q_d* form GeV-Scale dark hadrons (long lived)

- many displaced vertices
- ➢ Few tracks close to the collision point

DARK JETS

- X_d decay at interaction point
- Dark jet made of π_d (invisible)
- Each *π*_d decay leaves **Displaced Decay Vertex (DV)**

Dark particles Dark particles No energy visible Some energy visible All energy visible

Increasing Radial Distance

Emerging Jet with 3 DVs

I. Ramirez-Berend – 17 February 2024

EMERGING JETS TOPOLOGY IN ATLAS

SIMULATED SIGNAL MODELS

- Three parameters of interest change the phenomenology of emerging jets:
 - Dark Mediator Mass (M_X)
 - Dark Pion Lifetime $(c\tau)$
 - Dark Pion Mass (m_{π_d})

Carleton

- Define a 90 signal point grid
 - 5 GeV-scale dark pion masses: 0.8 20 GeV
 - 3 TeV-scale mediator masses: 600, 1000, 1400 GeV
 - 6 lifetimes per M_X in the range: 0.5 300 mm

EMERGING JET KINEMATICS

The Problem:

Signal Models can look very different

Some of them even resemble the background

The Solution: Use Machine Learning!

Separate Emerging Jets

from SM Jets

The Goal:

Carleton ATLAS

BOOSTED DECISION TREES (BDTs)

10

KEY ANALYSIS VARIABLES

Displaced Vertex Multiplicity

EMERGING JETS BDT STRUCTURE

- Combine all signal models together for training
- Train BDT in two steps:
- 1. Train on jet-level information
 - > Energy, Mass, Width, η
- 2. Train on event-level information
 - 4 jet BDT scores
 - > minPTF, sum of jet p_T , jet multiplicity
 - event-shape information

Calorimeter information from the visible part of jets

Variables which characterize the base event selection

Variables which characterize the topology of multi-jet events

$\mathcal{L} = 139 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$. ATLAS Work In Progress.

13

14

5

6 7

Run II Simulation

I. Ramirez-Berend – 17 February 2024

0.25

0.1 0.2

0.3 0.4 0.5 0.6 0.7 0.8

0

0.9 minPTE

EVENT-LEVEL BDT RESPONSE

- Test individual signal models against the collective BDT
 - Each signal model produces a different BDT distribution
 - Only one Background BDT distribution
- ATLAS Run II data is then tested against the BDT to get a data BDT distribution

Signal BD1

-0.8

DATA-DRIVEN BACKGROUND ESTIMATION

DATA-PREDICTED RESULTS

- Finalizing this ATLAS analysis, very close to publishing!
- Using Run II data, we predict sensitivity to most of our Emerging Jets models
- 1st of its kind analysis for ATLAS, expands the model space being tested for emerging-jet-like scenarios

Thank You For Listening!

ADDITIONAL MATERIAL

ATLAS Experiment and the LHC at CERN

THE STANDARD MODEL AND QCD

- Quantum Chromodynamics (QCD): *model* of Strong Interaction
 - Describes interactions between quarks and gluons
- Introduces three colour charges (*r*, *g*, *b*)
- Colour Confinement: all physical states are colourneutral
 - Quarks pair up into groups of 2 or 3:

- Baryons
- Asymptotic Freedom: coupling is inversely proportional to energy transfer
 - Need high energy (collider) environments to study perturbative QCD

20

PARTICLE JETS

- When quarks/gluons are produced in high-energy collisions they:
 - Hadronize: quarks pull other quarks out of the vacuum to form mesons and baryons
 - Shower: hadronization creates a collimated spray of particles
- What can we measure?
 - Tracks: charged particles produced in the shower leave tracks in our detectors
 - Energy Deposits (calo clusters): particles interact (either via EM or QCD) to leave energy deposits in calorimeters

JETS IN ATLAS

Carleton ATLAS Tracks from inner detectors

Energy deposits in calorimeters

Jet reconstruction clusters energy deposits into cones which point back to the initial interaction

VARIABLE DEFINITIONS

$$H_{T} = \sum_{i=1}^{4} p_{T,i}^{Jet}$$
$$\min PTF = \frac{1}{p_{T}^{Jet}} \sum_{i} p_{T,i}^{Track} \left(d_{0,i}^{Track} < 3 \sigma_{d_{0},i} \right) \; \forall \; i = Tracks \in Jet$$
$$E_{Jet} = \sum_{i} E_{i} \; \forall \; i = CaloCells \in Jet$$
$$M_{Jet} = \sqrt{\left(\left(\sum_{i} E_{i} \right)^{2} - \left(\sum_{i} \overline{p_{i}} \right)^{2} \; \forall \; i = CaloCells \in Jet \right)}$$

 η_{Jet} : Measured at the central axis of the jet

 $W_{Jet} = \frac{1}{p_T^{Jet}} \sum_i p_{T,i} \Delta R_i \forall i = CaloCells \in Jet \Delta R \text{ measured w. r. t. central axis of the jet}$ $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

VARIABLE DEFINITIONS [CONT.]

- Event Shape Variables: try to characterize the topology of multi-jet events
- Based on Jet-Momentum Tensor:

$$\mathbb{M}_{ij} = \sum_{k=0}^{3} \frac{\left(p_i p_j\right)_k}{\left(p_i p^i\right)_k}$$

- Produces Eigenvalues $(\lambda_0, \lambda_1, \lambda_2)$ which define the variables
 - > S_T : Define a plane perpendicular to the leading jet, measure of how much energy is along that plane
 - A: Define a plane through two leading jets, measure energy perpendicular to that plane

RECONSTRUCTED ANALYSIS OBJECTS

Calorimeter Jets (r21)

- EM-topo clusters
- anti- $k_T = 0.4$
- $p_T^{jet} \ge 50 \text{ GeV}$
- Event Preselection:
 - 4-jet trigger: HLT_4j90-150
 - $nJet \geq 4$
 - $p_T^{4 \ leading \ jets} \ge 120 \ \text{GeV}$
 - $|\eta|^{4 \ leading \ jets} < 2.4$

Tracks

- Combination of standard tracks and large radius tracks (LRT)
- Standard Tracks:
 - $p_T^{track} \ge 0.5 \text{ GeV}$
 - $|\eta|^{tracks} < 2.7$
- LRT:
 - $p_T^{track} \ge 0.9 \text{ GeV}$
 - $|\eta|^{tracks} < 5$
- Event Preselection :
 - $p_T^{track} \ge 1 \text{ GeV}$

Displaced Vertices

- Built with VSI vertexing
- Tight Working Point:
 - *r*, |*z*| < 300 mm
 - $|d_0| < 10 \text{mm}, |z_0| < 100 \text{ mm}$
 - $p_T^{DV} \ge 2.5 \text{ GeV}$
 - $m^{DV} > 0.7 \, \text{GeV}$
 - Pass Material Map Veto
- Event Preselection :
 - Must be jet-matched
 - $nDV \ge 1$

I. Ramirez-Berend – 17 February 2024

VARIABLE RANKS FROM SINGLE BDT TRAINING

Jet BDT Ranks					
Variable	Importance	Separation			
Mass	1	1			
Energy	2	4			
Width	3	2			
η	4	3			

Event BDT Ranks						
Variable	Importance	Separation				
minPTF	1	1				
nJet	4	2				
А	2	3				
S_T	7	7				
H_T	9	9				
BDT[0]	8	8				
BDT[1]	6	6				
BDT[2]	5	5				
BDT[3]	3	4				

SIGNAL SYSTEMATICS

CP Jet Systematics:

- JES: Strong Reduction Configuration
- JER: Simple JER Configuration
- JMS: Frozen Configuration
- Up and down shifts from all NPs are symmetrized and combined in quadrature to give single values for each source
- Each jet systematic is then combined to give one overall systematic uncertainty

CP Pileup Systematic:

Carleton

• Up and down pileup re-weightings are symmetrized

Tracking and Vertexting Systematic:

- Assume 2% for standard tracks, for LRT:
- Compare K-short vertices between data and MC
- Create a per-track uncertainty based on radial DV position
- Randomly remove tracks based on their per-track uncertainty
- Difference between modified and original vertex selection is taken as systematic uncertainty

PromptTrackFrac Systematic:

- Compare minPTF distributions between data and MC
- Ratios give a per-event weight used to scale the search region distribution
- Differences in signal yield gives systematic uncertainty

THEORETICAL CROSS-SECTION UNCERTAINTY

- Determined using stop pair production (in the limit where other squarks and gluinos have decoupled)
- Values taken from <u>SUSY cross-section Twiki</u>
- Since we use 3-color model, cross-sections are multiplied by a factor of 3

	$M_X = 600 \text{ GeV}$	$M_X = 1000 \text{ GeV}$	$M_X = 1400 \text{ GeV}$			
Old Values	430 fb	15.2 fb	1.08 fb			
Updated (with uncertainty)	$(650 \pm 50) { m fb}$	(20.5 ± 2.3) fb	(1.42 ± 0.22) fb			
Carleton						

ATLAS

LINEAR FIT FOR ABCD METHOD

- Instead of using just 4 regions, can break up the plane into many smaller regions
- Approximate the shape of the ratio $\frac{N_{C,s}}{N_{D,s}}$ as scanned over BDT
- Can fit a linear function to regions C and D, and extrapolate trend into A to estimate background

$$N_{A}^{est} = \sum_{s \in B} (p_{1} \cdot x_{s} + p_{0}) \cdot N_{B,s}$$

Linear Function Counts in each sub-region of B

LIKELIHOOD FIT AND CONFIDENCE LIMITS

 Simultaneous fit to entire ABCD plane, subdivided into sub-regions to fit linear function

$$\mathcal{L}(n_{i,s}|p_0, p_1, \mu, N_{i,s}) = \prod_{i=A,B,C,D} \prod_s \frac{e^{-N_{i,s}} N_{i,s}^{n_{i,s}}}{n_{i,s}!} \prod_{j=1}^4 \frac{e^{-\frac{1}{2}(\frac{1-\alpha_j}{\sigma_j})^2}}{\sigma_j \sqrt{2\pi}}$$

• Fit takes:
1. Data ABCD plane Solution So

- 2. Signal ABCD plane for signal subtraction
- 3. 4 Gaussian nuisance parameters for systematic uncertainties

- Background prediction given by: $N_A^{est} = \sum_{s \in B} (p_1 \cdot x_s + p_0) \cdot N_{B,s} + \mu \cdot N_{A,s}^{Sig}$
- Can then perform hypothesis test to find μ at 95% confidence limit
- In most cases use asymptotic formula to extract limit
 - In cases where asymptotic limits do not converge, can manually run toys to extract a limit

VALIDATION REGION DEFINITIONS

Carleton

Use orthogonal H_T selection to define Low $-H_T$ validation region, restrict lower edge of H_T for better Data-MC agreement

Test two different BDT cuts in $Low-H_T$: MC background BDT distribution runs out of stats at 0.2