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Looking	for	evidence	of	Dark-QCD	in	the	form	of	a	unique	collider	event	signature	known	as	’Emerging	Jets’

Active	analysis	using	data	collected	2015-2018	(Run	II)	with	the	ATLAS	detector	at	the	LHC

Aiming	to	publish	results	in	2024

ANALYSIS	GOAL:

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation



THE	EMERGING	JET	SIGNATURE

Expected	4-Jet	Signature

¡ 2	high	energy	SM	jets

¡ 2	‘Emerging”	jets:	
Ø many	displaced	vertices
Ø Few	tracks	close	to	the	collision	point
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¡ 𝑝𝑝 → 𝑋!
"𝑋! → 2 𝑞 + 2 𝑄!

¡ 𝑋!: TeV-Scale	Dark	Mediator

¡ 𝑄! form	GeV-Scale	dark	hadrons	(long	lived)

SM	Jets

Dark	Jets



DARK	JETS
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¡ 𝑋! decay	at	interaction	point

¡ Dark	jet	made	of	𝜋! (invisible)

¡ Each	𝜋! decay	leaves	Displaced	Decay	Vertex	(DV)

Emerging	Jet	with	3	DVs



EMERGING	JETS	TOPOLOGY	IN	ATLAS
Still	get	energy	deposits	

in	calorimeters
from	SM	decay	

products		

SM	background	events:
4-jet	events	with	very	few	DVs		
(QCD	multi-jet	processes)
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Displaced	vertex	(DV):
	built	from	tracks

Event	Signature:
2	Emerging	Jets

2	SM	Jets



SIMULATED	SIGNAL	MODELS

¡ Three	parameters	of	interest	change	the	
phenomenology	of	emerging	jets:
¡ Dark	Mediator	Mass	 𝑀!
¡ Dark	Pion	Lifetime	 𝑐𝜏

¡ Dark	Pion	Mass	 𝑚"!

¡ Define	a	90	signal point	grid
¡ 5	GeV-scale	dark	pion	masses: 0.8 − 20 GeV

¡ 3	TeV-scale	mediator	masses:	600, 1000, 1400 GeV

¡ 6	lifetimes	per	𝑀! in	the	range:	0. 5 − 300mm
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EMERGING	JET	KINEMATICS

𝑚#! ∝
1
𝑁#!

→
1
nDV

𝑐𝜏#! ∝ r#!
!$%&' → r()

Signal	events	can	look	
very	different	depending	
on	the	parameters	of	the	
model	(𝑚#! , 𝑀*, 𝑐𝜏#!)

I.	Ramirez-Berend	–	17	February	2024	

7

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation
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The	Goal:

Separate	Emerging	Jets	
from	SM	Jets

The	Problem:

Signal	Models	can	look	very	different

Some	of	them	even	resemble	the	background

The	Solution:	Use	Machine	Learning!



¡ Pass	events	through	a	series	of	binary	decisions

¡ Sort	events	into	background-like	(-1)	and	signal-like	(1)

¡ Gradient	Boosting:	re-train	BDT	several	times	on	events	which	were	
misclassified	to	improve	separating	power

¡ Each	event	given	a	score	from	[-1, 1],	aggregate	of	all	events	gives	
BDT	Response	Distribution:

BOOSTED	DECISION	TREES	(BDTs)

Poorly	Separated Ideally	SeparatedWell	Separated
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Background	Like	 	 	 	 	 Signal	Like

Decision	1

Decision	2 Decision	3Pass

Pass Pass

Fail

Fail Fail



KEY	ANALYSIS	VARIABLES
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¡ Expect	background	jets	to	have	lots	of	prompt	
tracks,	signal	to	have	few

¡ Prompt	Track	Fraction	(PTF):	measure	of	jet’s	
energy	from	prompt	tracks
¡ Use	minimum	of	4	leading	jets	to	separate	signal	and	

background

¡ Baseline	event	signature:	4	high	𝑝+ jets	
¡ Require	at	least	4	jets	per	event,		sum	of	4-jet	𝑝# ≥ 1000	GeV	

¡ Expect	signal	jets	to	have	many	DVs	→ use	jet-matched	DV	multiplicity	
Background	has	few	DVs

Signal	has	many	DVs

Background	jets	have	
~40%	prompt	energy	

Signal	jets	have	little	
prompt	energy	

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation



EMERGING	JETS	BDT	STRUCTURE

¡ Combine	all	signal	models	together	for	training

¡ Train	BDT	in	two	steps:

1. Train	on	jet-level	information
Ø Energy,	Mass,	Width,	𝜂

2. Train	on	event-level	information	
Ø 4	jet	BDT	scores

Ø minPTF,	sum	of	jet 𝑝#,	jet	multiplicity

Ø event-shape	information
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Calorimeter	information	from	the	visible	part	of	jets	

Variables	which	characterize	the	base	event	selection
Variables	which	characterize	the	topology	of	multi-jet	events
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Jet-Level
Variables

Jet-Level
BDT	Response

Event-Level
Variables

ATLAS	Work	In	Progress.	 ℒ = 139	fb,-, 𝑠 = 13	TeV.	 	 Run	II	Simulation



EVENT-LEVEL	BDT	RESPONSE
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¡ Test	individual	signal	models	against	the	collective	BDT
¡ Each	signal	model	produces	a	different	BDT	distribution

¡ Only	one	Background	BDT	distribution

¡ ATLAS	Run	II	data	is	then	tested	against	the	BDT	to	get	a	
data	BDT	distribution

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Simulation



Assumption	1:	Variables	are	Uncorrelated

Assumption	2:	Signal	Contained	in	Region	A

DATA-DRIVEN	BACKGROUND	ESTIMATION

ATLAS	Work	In	Progress
ℒ = 139	fb/0, 𝑠 = 13	TeV

Run	II	Data	

Region	A
(Blinded)

Region	C

Region	BRegion	D

𝑁.$/0 =
𝑁1
𝑁(

×𝑁2
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Signal	
Region	A

nDV	=	2

BDT	=	0.2

Control
Region	B

Control
Region	D

Control
Region	C

Want	Signal	
Here

DV	Multiplicity

BDT	Response



DATA-PREDICTED	RESULTS
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Stat.	Uncertainties	Only

Cr
os
s	s
ec
tio
n:
	𝜎
(𝑝
𝑝
→
𝑋 !
" 𝑋

!
)

Signal	Models

ATLAS	Work	In	Progress
ℒ = 139	fb/0, 𝑠 = 13	TeV

Run	II	Data	
Excluded



SUMMARY

¡ Finalizing	this	ATLAS	analysis,	very	close	to	publishing!

¡ Using	Run	II	data,	we	predict	sensitivity	to	most	of	our	Emerging	Jets	models

¡ 1st of	its	kind	analysis	for	ATLAS,	expands	the	model	space	being	tested	for	
emerging-jet-like	scenarios

Thank You For Listening!
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ADDITIONAL	MATERIAL
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ATLAS	Experiment	and	the	LHC	at	CERN

LHC	Ring	~9	km	Diameter	



19

I.	Ramirez-Berend	– 17	February	2024	

THE	STANDARD	MODEL	AND	QCD

¡ Quantum	Chromodynamics	(QCD):	model of	Strong	
Interaction

¡ Describes	interactions	between	quarks and	gluons
¡ Introduces	three	colour charges	(𝑟, 𝑔, 𝑏)
¡ Colour Confinement:	all	physical	states	are	colour-

neutral
¡ Quarks	pair	up	into	groups	of	2	or	3:

𝑔 + �̅� or 𝑟 + 𝑔 + 𝑏

¡ Asymptotic	Freedom: coupling	is	inversely	
proportional	to	energy	transfer
¡ Need	high	energy	(collider)	environments	to	study	

perturbative	QCD

Mesons Baryons
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PARTICLE	JETS	
¡ When	quarks/gluons	are	produced	in	high-energy	collisions	they:

¡ Hadronize:	quarks	pull	other	quarks	out	of	the	vacuum	to	form	mesons	and	baryons	

¡ Shower:		hadronization	creates	a	collimated	spray	of	particles	

¡ What	can	we	measure?
¡ Tracks:	charged	particles	produced	in	the	shower	leave	tracks	in	our	detectors

¡ Energy	Deposits	(calo	clusters):	particles	interact	(either	via	EM	or	QCD)	to	leave	energy	deposits	in	calorimeters

Jet	=	reconstructed	object	associated	to	q/g

q
g 𝛾

f
̅f Initial	direction	of	quark



JETS	IN	ATLAS

Tracks	from	inner	detectors

Energy	deposits	in	calorimeters
Jet	reconstruction	
clusters	energy	
deposits	into
cones	which
point	back	to

the	initial
	interaction

I.	Ramirez-Berend	–	17	February	2024	

21



22

I.	Ramirez-Berend	– 17	February	2024	

𝐻. =#
/01

2

𝑝.,/
345

min𝑃𝑇𝐹 =
1
𝑝.
345#

/

𝑝.,/.6789 𝑑:,/.6789 < 3 𝜎;.,/ ∀ 𝑖 = 𝑇𝑟𝑎𝑐𝑘𝑠 ∈ 𝐽𝑒𝑡

𝐸345 =#
/

𝐸/ ∀ 𝑖 = 𝐶𝑎𝑙𝑜𝐶𝑒𝑙𝑙𝑠 ∈ 𝐽𝑒𝑡

𝑀345 = #
/

𝐸/

<

− #
/

𝑝/

<

∀ 𝑖 = 𝐶𝑎𝑙𝑜𝐶𝑒𝑙𝑙𝑠 ∈ 𝐽𝑒𝑡

𝜂345: Measured at the central axis of the jet

𝑊345 =
1
𝑝.
345#

/

𝑝.,/ Δ𝑅/∀ 𝑖 = 𝐶𝑎𝑙𝑜𝐶𝑒𝑙𝑙𝑠 ∈ 𝐽𝑒𝑡 Δ𝑅 measured w. r. t. central axis of the jet

ΔR = Δ𝜂 < + Δ𝜙 <

VARIABLE	DEFINITIONS

ϕ

�⃑�

𝑝+

𝜂 = 0

𝜂 = ∞

𝜂 = −∞

ATLAS	RH	Coordinate	System
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VARIABLE	DEFINITIONS	[CONT.]

¡ Event	Shape	Variables:	try	to	characterize	the	topology	of	
multi-jet	events

¡ Based	on	Jet-Momentum	Tensor:

¡ Produces	Eigenvalues	(𝜆3, 𝜆-, 𝜆4)	which	define	the	variables

Ø 𝑆+:	Define	a	plane	perpendicular	to	the	leading	jet,	
measure	of	how	much	energy	is	along	that	plane

Ø 𝐴:	Define	a	plane	through	two	leading	jets,	
measure	energy	perpendicular	to	that	plane	

Leading	Jet

Leading	Jet

Sub-Leading	Jet

𝕄56 =	R
783

9 𝑝5𝑝6 7
𝑝5𝑝5 7

Event	with	high	𝑆+

Event	with	high	A
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RECONSTRUCTED	ANALYSIS	OBJECTS

Calorimeter	Jets	(r21)
¡ EM-topo	clusters

¡ anti- 𝑘# = 0.4

¡ 𝑝#
$%& ≥ 50 GeV

¡ Event	Preselection:	
¡ 4-jet	trigger:	HLT_4j90-150

¡ 𝑛𝐽𝑒𝑡 ≥ 4

¡ 𝑝#
' (%)*+,- $%&. ≥ 120 GeV

¡ 𝜂 ' (%)*+,- $%&. < 2.4

Tracks

¡ Combination	of	standard	tracks	
and	large	radius	tracks	(LRT)

¡ Standard	Tracks:
¡ 𝑝#&/)01 ≥ 0.5 GeV

¡ 𝜂 &/)01. < 2.7

¡ LRT:	

¡ 𝑝#&/)01 ≥ 0.9 GeV

¡ 𝜂 &/)01. < 5

¡ Event	Preselection	:
¡ 𝑝#&/)01 ≥ 1 GeV

Displaced	Vertices

¡ Built	with	VSI	vertexing

¡ Tight	Working	Point:
¡ 𝑟	, 𝑧 < 300	mm

¡ 𝑑2 < 10mm, 𝑧2 < 100	mm

¡ 𝑝#34 ≥ 2.5	GeV

¡ 𝑚34 > 0.7	GeV	

¡ Pass	Material	Map	Veto

¡ Event	Preselection	:
¡ Must	be	jet-matched

¡ 𝑛𝐷𝑉 ≥ 1
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VARIABLE	RANKS	FROM	SINGLE	BDT	TRAINING

Jet	BDT	Ranks
Variable Importance Separation
Mass 1 1
Energy 2 4
Width 3 2
𝜂 4 3

Event	BDT	Ranks
Variable Importance Separation
minPTF 1 1
nJet 4 2
A 2 3
𝑆+ 7 7
𝐻+ 9 9

BDT[0] 8 8
BDT[1] 6 6
BDT[2] 5 5
BDT[3] 3 4
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SIGNAL	SYSTEMATICS

CP	Jet	Systematics:
¡ JES:	Strong	Reduction	Configuration

¡ JER:	Simple	JER	Configuration

¡ JMS:	Frozen	Configuration

¡ Up	and	down	shifts	from	all	NPs	are	symmetrized	and	
combined	in	quadrature	to	give	single	values	for	each	
source

¡ Each	jet	systematic	is	then	combined	to	give	one	
overall	systematic	uncertainty

CP	Pileup	Systematic:
¡ Up	and	down	pileup	re-weightings	are	symmetrized

Tracking	and	Vertexting Systematic:
¡ Assume	2%	for	standard	tracks,	for	LRT:

¡ Compare	K-short	vertices	between	data	and	MC
¡ Create	a	per-track	uncertainty	based	on	radial	DV	position
¡ Randomly	remove	tracks	based	on	their	per-track	

uncertainty
¡ Difference	between	modified	and	original	vertex	selection	

is	taken	as	systematic	uncertainty

PromptTrackFrac Systematic:
¡ Compare	minPTF distributions	between	data	and	MC

¡ Ratios	give	a	per-event	weight	used	to	scale	the	search	
region	distribution

¡ Differences	in	signal	yield	gives	systematic	uncertainty
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THEORETICAL	CROSS-SECTION	UNCERTAINTY

¡ Determined	using	stop	pair	production	(in	the	limit	
where	other	squarks	and	gluinos have	decoupled)

¡ Values	taken	from	SUSY	cross-section	Twiki

¡ Since	we	use	3-color	model,	cross-sections	are	
multiplied	by	a	factor	of	3

𝑀1 = 600 GeV 𝑀1 = 1000 GeV 𝑀1 = 1400 GeV

Old	Values	 430 5b 15.2 5b 1.08 5b

Updated	(with	
uncertainty) (650 ± 50) 5b (20.5 ± 2.3) 5b (1.42 ± 0.22) 5b

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections13TeVstopsbottom
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¡ Instead	of	using	just	4	regions,	can	break	up	the	plane	
into	many	smaller	regions	

¡ Approximate	the	shape	of	the	ratio	:=,>
:?,>

as	scanned	

over	BDT

¡ Can	fit	a	linear	function	to	regions	C	and	D,	and	
extrapolate	trend	into	A	to	estimate	background

𝑁.$/0 =	 R
/	∈	2

𝑝- T 	𝑥/ + 𝑝3 ⋅ 𝑁2,/

LINEAR	FIT	FOR	ABCD	METHOD

Region	C	subdivided

Region	D	subdivided

Take	ratio	of	 :=,>
:?,>

Fit	linear	function

Region	B	subdivided

Region	A
Blinded

Towards	Signal	Region Linear	Function Counts	in	each	
sub-region	of	B

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Data	

ATLAS	Work	In	Progress
ℒ = 139	fb!", 𝑠 = 13	TeV

Run	II	Data	
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¡ Simultaneous	fit	to	entire	ABCD	plane,	subdivided	
into	sub-regions	to	fit	linear	function	

¡ Fit	takes:
1. Data	ABCD	plane

2. Signal	ABCD	plane	for	signal	subtraction

3. 4	Gaussian	nuisance	parameters	for	systematic	
uncertainties

LIKELIHOOD	FIT	AND	CONFIDENCE	LIMITS

¡ Background	prediction	given	by:

¡ Can	then	perform	hypothesis	test	to	find	𝜇 at	
95%	confidence	limit	

¡ In	most	cases	use	asymptotic	formula	to	
extract	limit
¡ In	cases	where	asymptotic	limits	do	not	

converge,	can	manually	run	toys	to	extract	a	
limit

control	+	signal	regions
Sub-divisions

Poisson	yields

Gaussian	nuisance	parameters

𝑁.$/0 =	 R
/	∈	2

𝑝- T 	𝑥/ + 𝑝3 ⋅ 𝑁2,/ + 𝜇 ⋅ 𝑁.,/
>5?



30

I.	Ramirez-Berend	– 17	February	2024	

VALIDATION	REGION	DEFINITIONS

Use	orthogonal	𝐻+ 	selection	to	define	Low−𝐻+ 	validation	region,	restrict	lower	edge	of	𝐻+ 	for	better	Data-MC	agreement

775	GeV ≤ 𝐻+ 	< 1000	GeV

Test	two	different	BDT	cuts	in	Low−𝐻+:
MC	background	BDT	distribution	runs	out	of	stats	at	0.2


