

Identifying new Long-lived particles (LLPs) using Graph Neural Networks with the ATLAS detector

Winter Nuclear and Particle Physics Conference

Paras Pokharel MSc student @ SFU 17 February 2024

SFU

Search for new Physics?

- No strong indications of new physics at the modern collider experiments.
 - Indicate two possibilities: either the new physics is above the energy scale accessible to LHC - the largest particle collider, or we have been looking at the "wrong places".
 - Wrong places?
 - Most BSM physics searches have been performed with the assumption that the particles decay (promptly) near the primary interaction point of collider experiments

Long Lived Particles (LLPs)

- LLPs: Particles that travel an observable distance from the primary collision point in particle detectors. Will have macroscopic proper lifetimes.
- Long-lived particle signatures : Unexplored phase space for BSM physics search, and requires a dedicated search
- As SM has LLPs (muons) no reason to exclude BSM searches with LLP signatures!

Image from Ref[1]

Theoretical Motivation for BSM LLPs

- dark sector(DS).
- Weak coupling between SM and DS can give rise to LLPs

Extended SM with additional particles and forces collectively referred as

Benchmark Model BSM physics processes that is considered

- Targeting s-channel production of dark quarks via Z' (vector) mediator.
- Dark mesons travel sizeable distances (5mm-50mm) before decaying back to SM
- Leads to exotic jet topologies known as Emerging Jets (EJs)

$$\mathcal{L}_{\rm med} = -\frac{1}{4} Z'^{\mu\nu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q'_i} \gamma^{\mu} q'_i + Z'_{\mu\nu} \bar{q'_i} \gamma^{\mu} q'_i$$

Emerging Jets (EJs) Signature!

- Jets are sprays of particles
- EJ's are BSM LLP signature!
- EJs are jets with many displaced tracks and displaced vertices.
- Difficult to identify!
 - Calorimeter signature looks similar to a QCD jet
 - Need to use the displaced tracks and vertices to identify the EJ using conventional methods

Emerging Jets Displaced tracks Secondary Vertex/ **Displaced vertex SM Jets Primary Vertex**

- Learns representation of relationship between the nodes and makes use of it for prediction/ classification tasks.
- Well suited for EJ tagging:
 - Can take large inputs. Inputs not fixed size
 - Good classifiers -> does not learn the ordering of the nodes (permutation invariant)
 - Learns relationships before classifying eg: if multiple displaced vertices, then emerging jet

GNNs Performance: Track Origin Classification (ROC)

- Pileup: From additional proton-proton interactions that occur within the same bunch crossing
- Fake: From purely combinatorial collections of hits
- Primary: From Primary Vertex
- Displaced: From Secondary vertices

FPR: proportion of actual negatives that are incorrectly identified as positives

GNN Performance: Vertex Identification

- included in a common reco-vertex!
- are from the same truth vertex.

GNN vertices have higher efficiency but have similar purity

Purity: Per-vertex fraction of tracks in the reconstructed vertex which

- Two categories: Signal Jets (*EJs*) from long lived dark background process!
- Signal jets peaks at last bin suggesting extremely high

Probability EJ = 0.2

 Requiring two jets to have GNN score > 0.995 gives significant background reduction with high signal efficiency!

Conclusion

- GNNs can identify intricate long lived particle signatures: "Emerging Jets" with high efficiency.
- as well as the identification of displaced vertices.

GNNs proven efficient in classifying displaced tracks

Backup

ATLAS Detector

GNN Architecture

- Combined input prepared and fed into network architecture (2 jet variables 16 track variables)
- Initial latent representation for each track created. These representations are then used to populate the node features of a fully connected graph network
- Message passing graph neural network's loss function also accounts node and vertex classification loss function.
- After the graph network, the resulting node representations used to predict Track Label (truthOriginLabel), JetLabel (isDisplaced) probability score.
- Architecture based on the ATLAS Flavour tagging software!

 $f(\mathbf{PX}) = \mathbf{P}' f(\mathbf{X})$

Jet-Track Inputs

variables:

- jet:
- pt
- eta

track:

- d0
- z0SinTheta
- dphi
- deta
- q0verP
- IP3D_signed_d0_significance
- IP3D_signed_z0_significance
- phiUncertainty
- thetaUncertainty
- q0verPUncertainty
- numberOfPixelHits
- numberOfSCTHits
- numberOfPixelSharedHits
- numberOfSCTSharedHits
- numberOfPixelHoles
- numberOfSCTHoles

Input Variables: Jets

- Two jet variables that constitute the basic kinematics of a jet p_T, η
- To avoid avoid kinematic biases for jet tagger, the distributions are "resampled", i.e ensure uniformity in the kinetic distribution!

Input Variables: Tracks

- Most discriminating ones include \bullet
- d_{Ω} : Distances of closest approach between the track - IP3D_signed_d0_significance: Ratio of d_0 and $\sigma(d_0)$ defined for both positive and negative scale with reference to the primary interaction point of the ATLAS detector $-\frac{\pi}{2}$ Track charge divided by momentum (measure of curvature)

• 16 track variables including track parameters in ATLAS tracking system, detector hits and holes variables, uncertainty in track parameters ... (detailed in backup slides)

Input Distribution (Tracks)

Samples Used for Training EJ classifier

QCD Ld40_rho80_pi20_Zp600_I50 Ld10_rho20_pi5_Zp600_l5 Ld10_rho20_pi5_Zp1500_l50 Ld20_rho40_pi10_Zp3000_l50

- Ld = dark confinement scale [GeV]
- rho = mass of rho meson [GeV]
- pi = mass of dark pion [GeV]
- Zp = mass of Z' [GeV]
- I = lifetime [mm]

Performance of Graph Neural Networks Trained for 37 epochs for 3 classification tasks

Vertex Finding **Graph Classification**

Jet Classification

Vertex Identification **Brief Introduction**

- Use jet-graph representation of the ATLAS simulation EJ sample and perform edge classification task to predict vertex compatibility for each track-pair!
 - Node = 2 jet variables + 16 track variables to form a node feature matrix!

- Only vertex-finding and not vertex fitting!
- Performance compared to other ATLAS secondary vertex reconstruction method, namely VSI.

Vertex Identification: Performance

- Efficiency: Per-vertex fraction of tracks in the truthvertex which are included in a common recovertex!
- For example, TruthVertexTrackIDs = [1,2,3,4,5, PredictVertexTrackIDs=[1,2,3] , then efficiency = 3/5. GNN vertices have higher efficiency than VSI!

GNN vertices have higher efficiency but have similar purity

- Purity: Per-vertex fraction of tracks in the reconstructed vertex which are from the same truth vertex.
- For example: TruthVertexTrackIDs = [1,2,3,4,5].
 PredictVertexTrackIDs=[1,2,3], Purity = 3/3

Vetex Identification: Performance

NumVertex Distribution

- Emerging jets, by definition, has multiple₁₀₀₀₀ vertices in a jet.
- #Vertex in per jet distribution
 - GNN dist. closer to truth dist.

GNN captures jet topology better!

Track Origin Identification Brief Introduction

- Ultimately, studying the properties of *long-lived* dark-matter requires precise identification of the "origin" of tracks associated with emerging jet!
- Track classifier based on "node classification task" of GNN into 4 track classes based on truth origin labels!
 - Pileup: From additional proton-proton interactions that occur within the same bunch crossing
 - Fake: From purely combinatorial collections of hits
 - Primary: From Primary Vertex
 - Displaced: From Secondary vertices

Track Origin Identification: Performance

- Highly effective in classifying tracks!
- Displaced tracks classification AUC: 0.983!

Track Origin Identification: Performance Confusion Matrix

- The diagonal elements of the matrix represent correct classification!
 - Pileups and Displaced tracks most accurately classified
 - ~20k "true" displaced tracks classified as pileups and vice versa!
 - ~16k "true" primary tracks classified as pileups

JetMatrixView

- 40 tracks x 40 tracks confusion matrix

Track ID Based Sort

	2223	2224	2225	2226
2223	1	0	1	0
2224	0	1	0	0
2225	1	0	1	0
2226	0	0	0	1

 Instead of being sorted by trackID's its sorted by truthVertexId of each track • For example {TrackId(VertexId)} in a Jet is {2223(1),2224(3),2225(1),2226(2)}

VertexID Based Sort

	2223	2225	2226	2224
2223	1	1	0	0
2225	1	1	0	0
2226	0	0	0	0
2224	0	0	0	0

Jet View from Classifiers! Use GNN to classify events?

- True labels vs GNN predicted labels visualization for jet, track and vertex prediction
- $n_{trk} \times n_{trk}$ matrix sorted by TruthVertID
 - 1 (Black) if two tracks share the same vertex
 - 0 (White) if two tracks do not share a common vertex

ATLAS Work in progress

performance on real data!

First looks at 2022 data validate GNN

Jet Classification: Performance

Probability Distribution

- Classify jets into 2 categories.Signal Jets (Displaced-jets) from long lived dark mesons and background Jets (Prompt jets) from QCD background process!
- GNN score: Softmax probability for jets to be signal jets!
- Signal jets peaks at last bin suggesting extremely high likelihood for majority of signal jets to be correctly identified!
- CLEAR separation between signal and background jets with high AUC = 0.987

