Dark photon conversions in the presence of multiple resonances

WNPPC 2024, Bromont, QC

Nirmalya Brahma

Dark photons and ordinary photons

Dark photons and ordinary photons

- Dark Photons are a plausible extension of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.

Dark photons and ordinary photons

- Dark Photons are plausible extensions of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.
- Kinetically mixes with the SM $U(1)$ (photons).

Dark photons and ordinary photons

- Dark Photons are plausible extensions of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.
- Kinetically mixes with the $\operatorname{SM} U(1)$ (photons).
- This kinetic mixing can give rise to dark photon to photon conversions which make dark photons potentially detectable. These inter-conversions are central to a lot of the current bounds.

Dark photons and ordinary photons

- Dark Photons are plausible extensions of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.
- Kinetically mixes with the $\operatorname{SM} U(1)$ (photons).
- This kinetic mixing can give rise to dark photon to photon conversions which make dark photons potentially detectable. These inter-conversions are central to a lot of the current bounds.
- Photons can acquire an effective (non-zero) mass in the presence of a medium. This can heavily modify the mixing properties.

Dark photons and ordinary photons

- Dark Photons are plausible extensions of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.
- Kinetically mixes with the $\mathrm{SM} U(1)$ (photons).
- This kinetic mixing can give rise to dark photon to photon conversions which make dark photons potentially detectable. These inter-conversions are central to lot of the current bounds.
- Photons can acquire an effective (non-zero) mass in the presence of a medium. This can heavily modify the mixing properties.
- Moreover, this induced effective mass may not be constant and can vary with space and time.

Dark photons and ordinary photons

- Dark Photons are plausible extensions of Standard Model (SM) and are basically the gauge bosons of a hidden $U(1)^{\prime}$ symmetry in BSM physics.
- Kinetically mixes with the $\operatorname{SM} U(1)$ (photons).
- This kinetic mixing can give rise to dark photon to photon conversions which make dark photons potentially detectable. These inter-conversions are central to lot of the current bounds.
- Photons can acquire an effective (non-zero) mass in the presence of a medium. This can heavily modify the mixing properties.
- Moreover, this induced effective mass may not be constant and can vary with space and time.
- Hence, a careful treatment of dark photon-photon oscillations in such potential profiles is important to accurately put bounds.

Photon-dark photon Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2} \epsilon F_{\mu \nu} X^{\mu \nu}+\frac{1}{2} m_{\gamma^{2}}^{2} A_{\mu}^{\prime} A^{\prime \mu}+e J^{\mu} A_{\mu}
$$

Photon-dark photon Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2} \epsilon F_{\mu \nu} X^{\mu \nu}+\frac{1}{2} m_{\gamma^{2}}^{2} A_{\mu}^{\prime} A^{\prime \mu}+e J^{\mu} A_{\mu}
$$

Photon-dark photon Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2} \epsilon F_{\mu \nu} X^{\mu \nu}+\frac{1}{2} m_{\gamma^{2}}^{2} A_{\mu}^{\prime} A^{\prime \mu}+e J^{\mu} A_{\mu}
$$

Photon-dark photon Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2} \epsilon F_{\mu \nu} X^{\mu \nu}+\frac{1}{2} m_{\gamma^{2}}^{2} A_{\mu}^{\prime} A^{\prime \mu}+e J^{\mu} A_{\mu}
$$

"Kinetic mixing term"

Dark Photon oscillation

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2}\left(\begin{array}{ll}
A_{1}^{\mu} & A_{2}^{\mu}
\end{array}\right)\left(\begin{array}{cc}
m_{\gamma}^{2} & 0 \\
0 & m_{\gamma^{\prime}}^{2}
\end{array}\right)\binom{A_{1 \mu}}{A_{2 \mu}}+e J^{\mu}\left(A_{1 \mu}+\epsilon A_{2 \mu}\right)
$$

$$
A_{1}^{\mu}=A^{\mu}-\epsilon A^{\prime \mu}
$$

"Mass eigenbasis"

$$
A_{2}^{\mu}=A^{\prime \mu}
$$

Dark Photon oscillation

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2}\left(\begin{array}{ll}
A_{1}^{\mu} & A_{2}^{\mu}
\end{array}\right)\left(\begin{array}{cc}
m_{\gamma}^{2} & 0 \\
0 & m_{\gamma^{\prime}}^{2}
\end{array}\right)\binom{A_{1 \mu}}{A_{2 \mu}}+e J^{\mu}\left(A_{1 \mu}+\epsilon A_{2 \mu}\right) \\
\left.A_{1}^{\mu}=A^{\mu}-\epsilon A^{\prime \mu} \quad \text { "Mass eigenbasis" } \begin{array}{c}
A_{2}^{\mu}=A^{\prime \mu}
\end{array}\right) \\
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} X_{\mu \nu} X^{\mu \nu}+\frac{1}{2}\left(\begin{array}{ll}
A_{a}^{\mu} & A_{s}^{\mu}
\end{array}\right)\left(\begin{array}{cc}
m_{\gamma}^{2} & \epsilon m_{\gamma^{\prime}}^{2} \\
\epsilon m_{\gamma^{\prime}}^{2} & m_{\gamma^{\prime}}^{2}
\end{array}\right)\binom{A_{a \mu}}{A_{s \mu}}+e J^{\mu} A_{a \mu}
\end{gathered}
$$

$$
A_{a}^{\mu}=A_{1}^{\mu}+\epsilon A_{2}^{\mu}: \text { active state }
$$

"Interaction eigenbasis"
$A_{s}^{\mu}=A_{1}^{\mu}-\epsilon A_{2}^{\mu}:$ sterile state

Schrodinger equation

$$
i \partial_{z}\binom{A_{a}}{A_{s}}=H\binom{A_{a}}{A_{s}}
$$

Schrodinger equation

$$
i \partial_{z}\binom{A_{a}}{A_{s}}=H\binom{A_{a}}{A_{s}}
$$

Schrodinger equation

$$
\begin{aligned}
& i \partial_{z}\binom{A_{a}}{A_{s}}=H\binom{A_{a}}{A_{s}} \\
& H_{0}=\frac{1}{2 \omega}\left(\begin{array}{cc}
m_{e f f}^{2} & 0 \\
0 & m_{\gamma^{\prime}}^{2}
\end{array}\right)
\end{aligned}
$$

Diagonal
Off-diagonal

Schrodinger equation

$$
\begin{aligned}
& i \partial_{z}\binom{A_{a}}{A_{s}}=H\binom{A_{a}}{A_{s}} \\
& H_{0}=\frac{1}{2 \omega}\left(\begin{array}{cc}
m_{e f f}^{2} & 0 \\
0 & m_{\gamma^{\prime}}^{2}
\end{array}\right)
\end{aligned} \quad H_{1}=\frac{1}{2 \omega}\left(\begin{array}{cc}
0 & \epsilon m_{\gamma^{\prime}}^{2} \\
\epsilon m_{\gamma^{\prime}}^{2} & 0
\end{array}\right), ~
$$

Diagonal
Off-diagonal

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

Schrodinger equation

$$
\begin{aligned}
& i \partial_{z}\binom{A_{a}}{A_{s}}=H\binom{A_{a}}{A_{s}} \\
& H_{0}=\frac{1}{2 \omega}\left(\begin{array}{cc}
m_{e f f}^{2} & 0 \\
0 & m_{\gamma^{\prime}}^{2}
\end{array}\right)
\end{aligned} \quad H_{1}=\frac{1}{2 \omega}\left(\begin{array}{cc}
0 & \epsilon m_{\gamma^{\prime}}^{2} \\
\epsilon m_{\gamma^{\prime}}^{2} & 0
\end{array}\right), ~
$$

Diagonal
Off-diagonal

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

Conversion probability

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

$$
\Phi(z)=\int_{z_{i}}^{z} d z^{\prime}\left(\frac{m_{\gamma^{\prime}}^{2}}{2 \omega}-\frac{m_{e f f}^{2}}{2 \omega}\right)
$$

"Accumulated relative phase"

Conversion probability

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

$$
\Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

"Accumulated relative phase"

- In vacuum, the photon state is massless and we have $m_{\text {eff }}^{2}=0$

$$
\left\langle P_{\gamma \leftrightarrow \gamma^{v}}^{v a c}\right\rangle=2 \epsilon^{2}
$$

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

$$
\Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

$$
\Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

- Highly oscillatory integral

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2} \quad \Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

- Highly oscillatory integral
- Except at stationary points, $\Phi^{\prime}=0 \longrightarrow m_{e f f}=m_{\gamma^{\prime}}$

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2} \quad \Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

- Highly oscillatory integral
- Except at stationary points, $\Phi^{\prime}=0 \longrightarrow m_{e f f}=m_{\gamma^{\prime}} \quad$ "MSW effect"

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2} \quad \Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

- Highly oscillatory integral
- Except at stationary points, $\Phi^{\prime}=0 \longrightarrow m_{e f f}=m_{\gamma^{\prime}} \quad$ "MSW effect"
- Integral gets most of it's contribution from stationary points

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2} \quad \Phi(z)=\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}-m_{e f f}^{2}}{2 \omega}
$$

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}} \approx \epsilon^{2}\left|\sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(z_{\text {res }}\right)\right|}} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z_{\text {res }}\right)}\right|^{2}
$$

Resonance and stationary phase approximation

$$
P_{\gamma \leftrightarrow \gamma^{\prime}} \approx \epsilon^{2} A^{2} \quad \text { with } \quad A \equiv \sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(z_{\text {res }}\right)\right|}}\left(\frac{m_{\gamma^{\prime}}^{2}}{2 \omega}\right)
$$

"Landau-Zener"

Non-monotonic profiles and multiple resonances

Non-monotonic profiles and multiple resonances

Non-monotonic profiles and multiple resonances

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

Non-monotonic profiles and multiple resonances

$$
P_{\gamma \leftrightarrow \gamma^{\prime}} \approx \epsilon^{2}\left|\sum_{n} \sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(z_{n}\right)\right|}} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z_{n}\right)}\right|^{2}
$$

Non-monotonic profiles and multiple resonances

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left(\sum_{n} A_{n}^{2}+2 \sum_{n<k} A_{n} A_{k} \cos \Phi_{n k}\right)
$$

Non-monotonic profiles and multiple resonances

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left(\sum_{n} A_{n}^{2}+2 \sum_{n<k} A_{n} A_{k} \cos \Phi_{n k}\right)
$$

"Sum of LZ"

Non-monotonic profiles and multiple resonances

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left(\sum_{n} A_{n}^{2}+2 \sum_{n<k} A_{n} A_{k} \cos \Phi_{n k}\right)
$$

"Phase effects"
Dashgupta \& Dighe (2007)

Breakdown of LZ

Breakdown of LZ

Breakdown of LZ

"Critical point"

Breakdown of LZ

Breakdown of LZ

$$
A_{n} \equiv \sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(z_{n}\right)\right|}}\left(\frac{m_{\gamma}^{2}}{2 \omega}\right)
$$

Breakdown of LZ

$$
A_{n} \equiv \sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(z_{n}\right)\right|}}\left(\frac{m_{\gamma^{\prime}}^{2}}{2 \omega}\right) \rightarrow \infty
$$

"Breakdown of LZ"

Breakdown of LZ

$$
P_{\gamma \leftrightarrow \gamma^{\prime}}=\epsilon^{2}\left|\int_{z_{i}}^{z} d z^{\prime} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega} e^{-i \Phi\left(z^{\prime}\right)}\right|^{2}
$$

Coalescing saddle points

$$
P_{\gamma \leftrightarrow \gamma^{\prime}} \approx \epsilon^{2}\left|2 \pi\left(\frac{2}{\left|\Phi^{(3)}\left(z_{C}\right)\right|}\right)^{1 / 3} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega}\left(\mathrm{Ai}(-\zeta)+i \# \mathrm{Ai}^{(1)}(-\zeta)\right)\right|^{2} \quad \begin{aligned}
& \mathrm{Ai} \rightarrow \text { Airy function } \\
& \zeta \sim\left(\frac{2}{\left|\Phi^{(3)}\right|}\right)^{1 / 3} \Phi^{(1)}
\end{aligned}
$$

Coalescing saddle points

$$
P_{\gamma \leftrightarrow \gamma^{\prime}} \approx \epsilon^{2}\left|2 \pi\left(\frac{2}{\left|\Phi^{(3)}\left(z_{C}\right)\right|}\right)^{1 / 3} \frac{m_{\gamma^{\prime}}^{2}}{2 \omega}\left(\mathrm{Ai}(-\zeta)+i \# \mathrm{Ai}^{(1)}(-\zeta)\right)\right|^{2}
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

$$
a=2000, b=10
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

$$
a=2000, b=10
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

$$
a=2000, b=10
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

Phase
This work

$$
a=2000, b=10
$$

Toy model

$$
m_{e f f}^{2}(z)=b^{2}\left[1-\left(\frac{z}{a}-1\right)^{2}\right]
$$

$$
\xi \sim \frac{\left|\Phi^{(2)}\left(z_{C}\right)\right|}{\left|\Phi^{(3)}\left(z_{C}\right)\right|^{2 / 3}}
$$

NB, Asher Berlin, Katelin Schutz (PRD 2023)

Astrophysical examples

Reionisation plasma

Reionization plasma

\square LZ Phase This work

NB, Asher Berlin, Katelin Schutz (PRD 2023)

Neutron star magnetospheres

Neutron star magnetospheres

Neutron star magnetospheres

Neutron star magnetospheres

$$
B_{0} / B_{c r i t}=1, P=1 \mathrm{sec}, \omega=1 \mathrm{eV}
$$

Neutron star magnetospheres

LZ
Phase
This work
$B_{0} / B_{\text {crit }} \sim 10, P \sim 1 \mathrm{~ms}, \omega \sim 0.1 \mathrm{eV}$

Summary

- Non-monotonic potential profiles are ubiquitous in astrophysics. More examples supernova shockwave, solar chromosphere etc.

Summary

- Non-monotonic potential profiles are ubiquitous in astrophysics. More examples supernova shockwave, solar chromosphere etc.
- The usual Landau-Zener formula breaks down near critical points.

Summary

- Non-monotonic potential profiles are ubiquitous in astrophysics. More examples - supernova shockwave, solar chromosphere etc.
- The usual Landau-Zener formula breaks down near critical points.
- Our expression for coalescing saddle point provides an accurate prescription for evaluating the conversion probability.

Summary

- Non-monotonic potential profiles are ubiquitous in astrophysics. More examples - supernova shockwave, solar chromosphere etc.
- The usual Landau-Zener formula breaks down near critical points.
- Our expression for coalescing saddle point provides an accurate prescription for evaluating the conversion probability.
- Moreover, it can be used for neutrino oscillations, axion-photon conversions, etc.

Thank you!

Funded by:

Arthur B. McDonald
Canadian Astroparticle Physics Research Institute

RESEARCH EXCELLENCE FUND

Stationary phase approximation

$$
\Phi(m, z)=\Phi\left(m, z_{0}\right)+\Phi^{(1)}\left(m, z_{0}\right)\left(z-z_{0}\right)+\frac{1}{2!} \Phi^{(2)}\left(m, z_{0}\right)\left(z-z_{0}\right)^{2}+\frac{1}{3!} \Phi^{(3)}\left(m, z_{0}\right)\left(z-z_{0}\right)^{3}+\cdots
$$

- At critical point, $m=m_{C}$

$$
\Phi^{(1)}\left(m_{C}, z_{0}\right)=\Phi^{(2)}\left(m_{C}, z_{0}\right)=0
$$

DP parameter space and bounds

Neutron star magnetospheres

$$
B_{0} / B_{c r i t}=10
$$

Sudden approximation

Sudden approximation

$$
\mu \equiv \max \left(A_{n}\right) \quad \text { "Resonance enhancement }
$$

Sudden approximation

$$
\mu \equiv \frac{L_{\text {potential }}}{L_{\text {vacuum }}}
$$

Sudden approximation

$$
\mu \equiv \frac{L_{\text {potential }}}{L_{\text {vacuum }}}
$$

Sudden approximation

$$
\mu \ll 1 \longrightarrow P_{\gamma \leftrightarrow \gamma^{\prime}}=\text { vacuum osc. }
$$

Toy model

$$
a=20, b=10
$$

Toy model

Neutron star magnetospheres

- Effective mass induced by plasma

$$
m_{e f f}^{2}=\frac{4 \pi \alpha \rho_{G J}}{e m_{e}}
$$

- Effective mass induced by large external magnetic fields

$$
m_{e f f}^{2}=-\frac{7 \alpha}{45 \pi}\left(\frac{B_{\text {ext }}}{B_{\text {crit }}}\right)^{2} \omega^{2}
$$

- $B_{\text {ext }}$ is dominated by the dipole component

Non-monotonic profiles and multiple resonances

$$
\begin{gathered}
\left|\int_{z_{i}}^{z_{f}} d z^{\prime} \Delta_{\gamma^{\prime}}\left(z^{\prime}\right) e^{-i \Phi\left(m_{\gamma^{\prime}} z^{\prime}\right)}\right|^{2} \approx\left|\sum_{n} \sqrt{\frac{2 \pi}{\left|\Phi^{(2)}\left(m_{\gamma^{\prime}}, z_{n}\right)\right|}} \Delta_{\gamma^{\prime}}\left(z_{n}\right) e^{-i \Phi\left(m_{\left.\gamma^{\prime}, z_{n}\right)}\right)-i \sigma_{n} \frac{\pi}{4}}\right|^{2} \\
P_{\gamma \rightarrow \gamma^{\prime}}\left(m_{\gamma^{\prime}}\right) \approx 4 \pi^{2} \epsilon^{2} \Delta_{\gamma^{\prime}}^{2}\left(z_{C}\right)\left(\frac{2}{\left|\Phi_{C}^{(3)}\left(m_{\gamma^{\prime}}\right)\right|}\right)^{2 / 3}\left\{\mathbf{A i}(-\zeta)+i \sigma_{1}\left(\frac{2}{\left|\Phi_{C}^{(3)}\left(m_{\gamma^{\prime}}\right)\right|}\right)^{1 / 3}\left[\frac{\omega_{C}^{\prime}}{\omega_{C}}-\frac{1}{6} \frac{\Phi_{C}^{(4)}\left(m_{\gamma^{\prime}}\right)}{\Phi_{C}^{(3)}\left(m_{\gamma^{\prime}}\right)}\right] \mathbf{A i}^{\prime}(-\zeta)\right\}^{2} \\
\zeta\left(m_{\gamma^{\prime}}\right)=\left(\frac{2}{\left|\Phi^{(3)}\left(z_{C}, m\right)\right|}\right)^{1 / 3} \Phi^{(1)}\left(z_{C}, m\right)
\end{gathered}
$$

