Bayesian Constraints of Quark Gluon Plasma Properties

Gojko Vujanovic

University of Regina

WNPPC2024 – 61st Winter Nuclear Particle Physics Conference

Bromont, Québec

February 16th, 2024

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

High energy nuclear collisions & nuclear equation of state

Evolution of the nuclear medium as seen through jets

- The nuclear fluid is created during preequilibrium dynamics stage, where most of the collision's $T^{\mu\nu}$ will be in the fluid.
- Hydrodynamical stage (Temp $\sim 10^2$ MeV): Strongly coupled quark gluon plasma (QGP)
 - Equation of State (EoS) computed via Lattice QCD
- Molecular dynamics stage (Temp ~ 10 MeV): $\lambda_{micro} \sim L_{hydro}$, simulation switches to Boltzmann transport
- Following free-streaming, soft hadrons ($p_T \lesssim 3$ GeV/c) carry most of the medium's $T^{\mu\nu}$ to detectors.

Evolution of the nuclear medium as seen through jets

- The nuclear fluid is created during preequilibrium dynamics stage, where most of the collision's $T^{\mu\nu}$ will be in the fluid.
- Hydrodynamical stage (Temp ~ 10² MeV):
 Strongly coupled quark gluon plasma (QGP)
 - Equation of State (EoS) computed via Lattice QCD
- Molecular dynamics stage (Temp ~ 10 MeV): $\lambda_{micro} \sim L_{hydro}$, simulation switches to Boltzmann transport
- Following free-streaming, soft hadrons ($p_T \lesssim 3$ GeV/c) carry most of the medium's $T^{\mu\nu}$ to detectors.
- To help simulate these different aspects of heavy-ion collisions, the JETSCAPE (Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope) framework was used.

Nuclear equation of state in thermal equilibrium

- $\uparrow \sqrt{s_{NN}} \Rightarrow$ more gluons $\Rightarrow n_q \sim n_{\bar{q}} \Rightarrow \mu_B \approx 0$
- $\downarrow \sqrt{s_{NN}} \Rightarrow$ more valance quarks $\Rightarrow \mu_B > 0$

Lattice QCD (L-QCD) equation of state (EoS)

 $\mu_B \propto (number \ of \ baryons) - (number \ antibaryons)$

Overview of fluid dynamics

- P(T) can be used to describe fluids in perfect thermal equilibrium
- Is a perfect thermal equilibrium created after a nucleus-nucleus collision?
 - Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it's dissipative or viscous

Overview of fluid dynamics

- P(T) can be used to describe fluids in perfect thermal equilibrium
- Is a perfect thermal equilibrium created after a nucleus-nucleus collision?
 - Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it's dissipative or viscous
- Fluid perturbations and dissipation:

Wave propagation of perturbations at speed of sound c_s

$$Pert. \propto \exp\left[i(c_{s}kt - \vec{k} \cdot \vec{x}) - \frac{4\eta}{3s}\frac{k}{2T}kt\right]$$

Decay/Dissipation

of perturbations

Overview of fluid dynamics

- P(T) can be used to describe fluids in perfect thermal equilibrium
- Is a perfect thermal equilibrium created after a nucleus-nucleus collision?
 - Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it's dissipative or viscous
- Fluid perturbations and dissipation:

Wave propagation of perturbations at speed of sound c_s

Pert.
$$\propto \exp\left[i(c_skt - \vec{k} \cdot \vec{x}) - \frac{4\eta}{3s}\frac{k}{2T}kt\right]$$

Decay/Dissipation

- Specific shear viscosity η/s is a transport coefficient
 - η shear viscosity
 - *s* entropy density
- η introduces friction between fluid layers

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ , mass density is inappropriate: pair production & annihilation!

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ

 $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$ Landau's definition of fluid flow
• Non-dissipative $T_{0}^{\mu\nu}$ can only take the form: $u^{\mu} = (\gamma, \gamma \vec{\beta}) \text{ where}$ $\gamma = (1 - \beta^2)^{-1/2} \text{ and } \vec{\beta} = \vec{v}/c.$ Using natural units from now on $\Rightarrow c = 1 = \hbar = k_B$

 $T_0^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - P(\epsilon)\Delta^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - P(\epsilon)(g^{\mu\nu} - u^{\mu}u^{\nu}) \qquad \Rightarrow \text{Pressure drives } \dot{u}^{\mu} \perp u^{\mu} \Rightarrow P(\epsilon)\Delta^{\mu\nu}$

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ

 $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$ Landau's flow definition $u^{\mu} = (\gamma, \gamma \vec{\beta}) \text{ where}$ $\gamma = (1 - \beta^2)^{-1/2} \text{ and } \vec{\beta} = \vec{v}/c. \text{ Using natural units from now on } \Rightarrow c = 1 = \hbar = k_B$

• Non-dissipative $T_0^{\mu\nu}$ can only take the form:

$$T_0^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) \Delta^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) (g^{\mu\nu} - u^{\mu} u^{\nu})$$

• Including dissipation gives rise to dissipative corrections $\delta T^{\mu\nu}$ to $T_0^{\mu\nu}$, namely Π and $\pi^{\mu\nu}$ $T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu} = T_0^{\mu\nu} - \Pi \Delta^{\mu\nu} + \pi^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$ Bulk viscous Shear viscous pressure tensor

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ

 $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$ Landau's flow definition $u^{\mu} = (\gamma, \gamma \vec{\beta}) \text{ where}$ $\gamma = (1 - \beta^2)^{-1/2} \text{ and } \vec{\beta} = \vec{v}/c. \text{ Using natural units from now on } \Rightarrow c = 1 = \hbar = k_B$

• Non-dissipative $T_0^{\mu\nu}$ can only take the form:

$$T_0^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) \Delta^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) (g^{\mu\nu} - u^{\mu} u^{\nu})$$

• Including dissipation gives rise to dissipative corrections $\delta T^{\mu\nu}$ to $T_0^{\mu\nu}$, namely Π and $\pi^{\mu\nu}$ $T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu} = T_0^{\mu\nu} - \Pi \Delta^{\mu\nu} + \pi^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$

where the viscous pressures are decomposed in terms of irreducible tensors, namely

radial deformations

angular deformations

$$\pi^{\mu\nu} = T^{\langle\mu\nu\rangle} = \Delta^{\mu\nu}_{\alpha\beta} T^{\alpha\beta} = \left[\frac{1}{2} \left(\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta} \Delta^{\nu}_{\alpha}\right) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta}\right] T^{\alpha\beta}$$
$$w/\pi^{\mu}_{\mu} = 0 \text{ and } u_{\mu} \pi^{\mu\nu} = 0$$

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ

 $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$ Landau's flow definition $u^{\mu} = (\gamma, \gamma \vec{\beta}) \text{ where}$ $\gamma = (1 - \beta^2)^{-1/2} \text{ and } \vec{\beta} = \vec{v}/c. \text{ Using natural units from now on } \Rightarrow c = 1 = \hbar = k_B$

• Non-dissipative $T_0^{\mu\nu}$ can only take the form:

radial deformations

$$T_0^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) \Delta^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) (g^{\mu\nu} - u^{\mu} u^{\nu})$$

• Including dissipation gives rise to dissipative corrections $\delta T^{\mu\nu}$ to $T_0^{\mu\nu}$, namely Π and $\pi^{\mu\nu}$ $T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu} = T_0^{\mu\nu} - \Pi \Delta^{\mu\nu} + \pi^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$

where the viscous pressures are decomposed in terms of irreducible tensors, namely

angular deformations

$$\Pi = -\frac{1}{3}\Delta^{\mu\nu}T_{\mu\nu} - P(\epsilon) \qquad \pi^{\mu\nu} = T^{\langle\mu\nu\rangle} = \Delta^{\mu\nu}_{\alpha\beta} T^{\alpha\beta} = \left[\frac{1}{2}\left(\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta}\Delta^{\nu}_{\alpha}\right) - \frac{1}{3}\Delta^{\mu\nu}\Delta_{\alpha\beta}\right]T^{\alpha\beta}$$
$$w/\pi^{\mu}_{\mu} = 0 \text{ and } u_{\mu}\pi^{\mu\nu} = 0$$

• The EoM for Π and $\pi^{\mu\nu}$ are from the Boltzmann equation.

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep.

$$f_p = f_{0p} + \delta f_p = f_{0p} \left[1 + G(p^0, |\vec{p}|) \otimes \phi_p \right]$$
 [J. Phys. G: Nucl. Part. Phys. **41**, 124004 (2014)]
thermal distribution

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep. $f_p = f_{0p} + \delta f_p = f_{0p} [1 + G(p^0, |\vec{p}|) \otimes \phi_p]$ [J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)] monopole "angular" dep. quadrupole

$$= f_{0p} \Big[1 + \Big\{ G_0(p^0, |\vec{p}|) + G_1(p^0, |\vec{p}|) c_{\langle \mu \rangle} p^{\langle \mu \rangle} + G_2(p^0, |\vec{p}|) c_{\langle \mu \nu \rangle} p^{\langle \mu} p^{\nu \rangle} + \cdots \Big\} \Big]$$

dipole

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep. $f_{\mu} = f_{\mu} + \delta f_{\mu} - f_{\mu} \left[1 + C(p^0 |\vec{p}|) \otimes \phi_{\mu}\right]$ [LPbys G: Nucl. Part. Phys. 41, 124004 (2014)]

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep.

$$\begin{split} f_p &= f_{0p} + \delta f_p = f_{0p} \Big[1 + G \Big(p^0, |\vec{p}| \Big) \otimes \phi_p \Big] & \text{[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]} \\ & \text{monopole} & \text{"angular" dep.} & \text{quadrupole} \\ &= f_{0p} \Big[1 + \Big\{ G_0 \Big(p^0, |\vec{p}| \Big) + G_1 \Big(p^0, |\vec{p}| \Big) c_{\langle \mu \rangle} p^{\langle \mu \rangle} + G_2 \Big(p^0, |\vec{p}| \Big) c_{\langle \mu \nu \rangle} p^{\langle \mu} p^{\nu \rangle} + \cdots \Big\} \Big] \\ &= f_{0p} + \delta f_{\Pi} + \delta f_{\pi} + \cdots \\ & \text{where } \frac{\delta f_p}{f_{0p}} < 1 \text{ is assumed} \end{split}$$

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep.

$$f_{p} = f_{0p} + \delta f_{p} = f_{0p} \left[1 + G(p^{0}, |\vec{p}|) \otimes \phi_{p} \right] \quad \text{[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]}$$

$$= monopole \qquad \text{``angular'' dep.} \qquad \text{quadrupole}$$

$$= f_{0p} \left[1 + \left\{ G_{0}(p^{0}, |\vec{p}|) + G_{1}(p^{0}, |\vec{p}|) c_{\langle \mu \rangle} p^{\langle \mu \rangle} + G_{2}(p^{0}, |\vec{p}|) c_{\langle \mu \nu \rangle} p^{\langle \mu} p^{\nu \rangle} + \cdots \right\} \right]$$

$$= f_{0p} \left[1 + \delta f_{0} + \delta f_{$$

$$= f_{0p} + \delta f_{\Pi} + \delta f_{\pi} + \cdots$$

where $\frac{\delta f_p}{f_{0p}} < 1$ is assumed

• For an ideal fluid (i.e., ideal hydrodynamics)

$$T_0^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 p^0} p^{\mu} p^{\nu} f_{0p} \quad \text{w/ } f_{0p} = \left[\exp\left(\frac{p \cdot u}{T} - \mu\right) \pm a \right]^{-1} \quad a = \begin{cases} 1 & \text{Bose} - \text{Einstein} \\ 0 & \text{Boltzmann} \\ -1 & \text{Fermi} - \text{Dirac} \end{cases}$$

• Expanding the f_p in the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ w/ irreducible moments "radial" dep.

$$f_{p} = f_{0p} + \delta f_{p} = f_{0p} \left[1 + G(p^{0}, |\vec{p}|) \otimes \phi_{p} \right] \quad \text{[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]}$$

$$\begin{array}{c} \text{monopole} & \text{"angular" dep.} & \text{quadrupole} \\ = f_{0p} \left[1 + \left\{ G_{0}(p^{0}, |\vec{p}|) + G_{1}(p^{0}, |\vec{p}|) c_{\langle \mu \rangle} p^{\langle \mu \rangle} + G_{2}(p^{0}, |\vec{p}|) c_{\langle \mu \nu \rangle} p^{\langle \mu} p^{\nu \rangle} + \cdots \right\} \right]$$

$$\begin{array}{c} \text{conserved charge diffusion} \end{array}$$

$$= f_{0p} + \delta f_{\Pi} + \delta f_{\pi} + \cdots$$

where $\frac{\delta f_p}{f_{0p}} < 1$ is assumed

• For an ideal fluid (i.e., ideal hydrodynamics)

$$T_0^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 p^0} p^{\mu} p^{\nu} f_{0p} \quad \text{w/ } f_{0p} = \left[\exp\left(\frac{p \cdot u}{T} - \mu\right) \pm a \right]^{-1} \quad a = \begin{cases} 1 & \text{Bose} - \text{Einstein} \\ 0 & \text{Boltzmann} \\ -1 & \text{Fermi} - \text{Dirac} \end{cases}$$

• While the EoM for monopole and quadrupole deformations use Boltzmann equation

$$\Pi = -\frac{\Delta_{\alpha\beta}}{3} \int \frac{d^3p}{(2\pi)^3 p^0} p^{\alpha} p^{\beta} \delta f_{\Pi}; \qquad \qquad \pi^{\mu\nu} = \Delta_{\alpha\beta}^{\mu\nu} \int \frac{d^3p}{(2\pi)^3 p^0} p^{\alpha} p^{\beta} \delta f_{\pi}$$

• Relativistic dissipative hydrodynamics

 $\begin{array}{l} \partial_{\mu} \ T^{\mu\nu} = 0 & P(\varepsilon) \text{ use lattice QCD EoS} \\ T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} - [P(\varepsilon) + \Pi]\Delta^{\mu\nu} + \pi^{\mu\nu} \\ \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu} \end{array}$

• The expanding the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ using $\delta f_{\Pi,\pi}$ up to rank-2 tensors gives EoM for Π and $\pi^{\mu\nu}$:

$$\begin{split} \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu} + \cdots \\ \theta &= \partial_{\mu}u^{\mu} \\ \sigma^{\mu\nu} &= \partial^{\langle\mu}u^{\nu\rangle} \\ \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} - \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle}_{\alpha} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} + \cdots \end{split}$$

• Relativistic dissipative hydrodynamics

 $\begin{array}{l} \partial_{\mu} \ T^{\mu\nu} = 0 & P(\varepsilon) \text{ use lattice QCD EoS} \\ T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} - [P(\varepsilon) + \Pi]\Delta^{\mu\nu} + \pi^{\mu\nu} \\ \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu} \end{array}$

• The expanding the Boltzmann equation $p^{\mu}\partial_{\mu}f_p = C[f_p]$ using $\delta f_{\Pi,\pi}$ up to rank-2 tensors gives EoM for Π and $\pi^{\mu\nu}$:

$$\begin{split} \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu} + \cdots \\ \theta &= \partial_{\mu}u^{\mu} \\ \sigma^{\mu\nu} &= \partial^{\langle\mu}u^{\nu\rangle} \\ \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} - \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle}_{\alpha} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} + \cdots \end{split}$$

The goal is to constrain ζ and η via Bayesian analysis [all transport coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]

• As $\epsilon \downarrow \Rightarrow \lambda_{mfp}$ 1. Once $\lambda_{mfp} \sim L$, the hydrodynamical approximation breaks down \Rightarrow the full Boltzmann equation must be solved.

- As $\epsilon \downarrow \Rightarrow \lambda_{mfp}$ 1. Once $\lambda_{mfp} \sim L$, the hydrodynamical approximation breaks down \Rightarrow the full Boltzmann equation must be solved.
- Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} (f_{0} + \delta f_{\Pi} + \delta f_{\pi}) \quad f_{0} = g[\exp(E/T) + a]^{-1}$$
$$a = \begin{cases} 1 & \text{Bose} - \text{Einstein} \\ 0 & \text{Boltzmann} \\ -1 & \text{Fermi} - \text{Dirac} \end{cases}$$

https://en.wikipedia.org/wiki/Stokes%27_theorem

- As $\epsilon \downarrow \Rightarrow \lambda_{mfp}$ 1. Once $\lambda_{mfp} \sim L$, the hydrodynamical approximation breaks down \Rightarrow the full Boltzmann equation must be solved.
- Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} (f_{0} + \delta f_{\Pi} + \delta f_{\pi}) \quad f_{0} = g [\exp(E/T) + a]^{-1}$$

• Grad's expansion, using $\delta f/f_0 < 1$, yields

$$\delta f_{\pi} = f_0 (1 + a f_0) A_{\pi} p_{\mu} p_{\nu} \pi^{\mu \nu} = f_0 (1 + a f_0) \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{2(\epsilon + P)T^2}$$

$$\delta f_{\Pi} = f_0 (1 + a f_0) \Pi \left(A_E (p \cdot u)^2 + A_T m^2 \right)$$

$$A_E, A_T \propto \int \frac{d^3 p}{(2\pi)^3 p^0} (p \cdot u)^m (-p \cdot \Delta \cdot p)^n f_0 (1 + a f_0) \quad \text{thermodynamical integrals}$$

[PRC 103, 064903 (2021)]

https://en.wikipedia.org/wiki/Stokes%27_theorem

- As $\epsilon \downarrow \Rightarrow \lambda_{mfp}$ 1. Once $\lambda_{mfp} \sim L$, the hydrodynamical approximation breaks down \Rightarrow the full Boltzmann equation must be solved.
- Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} (f_{0} + \delta f_{\Pi} + \delta f_{\pi}) \quad f_{0} = g[\exp(E/T) + a]^{-1}$$

• An alternative to the Grad expansion, Chapman-Enskog expansion uses small gradients (i.e. flow, μ_B , ...) as expansion parameter $(\delta f/f_0 < 1)$


```
https://en.wikipedia.org/wiki/Stokes%27_theorem
```

$$\begin{split} \delta f_{\pi} &= f_0 (1 + a f_0) \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{2(p \cdot u) J_{32}}; \\ \delta f_{\Pi} &= f_0 (1 + a f_0) \frac{\Pi}{\beta_{\Pi}} \left[\frac{(p \cdot u) \mathcal{F}}{T^2} - \frac{p \cdot \Delta \cdot p}{3T(p \cdot u)} \right]; \\ \delta f_{\Pi} &= f_0 (1 + a f_0) \frac{\Pi}{\beta_{\Pi}} \left[\frac{(p \cdot u) \mathcal{F}}{T^2} - \frac{p \cdot \Delta \cdot p}{3T(p \cdot u)} \right]; \\ \beta_{\Pi}, \mathcal{F} \propto \int \frac{d^3 p}{(2\pi)^3 p^0} (p \cdot u)^m (-p \cdot \Delta \cdot p)^n f_0 (1 + a f_0) d\beta_{\Pi} d\beta_$$

- As $\epsilon \downarrow \Rightarrow \lambda_{mfp}$ 1. Once $\lambda_{mfp} \sim L$, the hydrodynamical approximation breaks down \Rightarrow the full Boltzmann equation must be solved.
- Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} (f_{0} + \delta f_{\Pi} + \delta f_{\pi}) \quad f_{0} = g[\exp(E/T) + a]^{-1}$$

• An alternative to the Grad expansion, Chapman-Enskog expansion uses small gradients (i.e. flow, μ_B , ...) as expansion parameter

https://en.wikipedia.org/wiki/Stokes%27_theorem

$$\begin{split} \delta f_{\pi} &= f_0 (1 + a f_0) \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{2(p \cdot u) J_{32}}; \\ \delta f_{\Pi} &= f_0 (1 + a f_0) \frac{\Pi}{\beta_{\Pi}} \left[\frac{(p \cdot u) \mathcal{F}}{T^2} - \frac{p \cdot \Delta \cdot p}{3T(p \cdot u)} \right]; \\ \end{split} \qquad J_{rq} \propto \int \frac{d^3 p}{(2\pi)^3 p^0} (p \cdot u)^{r-2q} (-p \cdot \Delta \cdot p)^q f_0 (1 + a f_0) \\ \beta_{\Pi} &= \int \frac{d^3 p}{(2\pi)^3 p^0} (p \cdot u)^m (-p \cdot \Delta \cdot p)^n f_0 (1 + a f_0) \end{split}$$

• Note that Chapman-Enskog expansion gives the same equations of motion for Π and $\pi^{\mu\nu}$ as Grad's moments, however with different transport coefficients. [PRC 89, 054903 (2014)]

 Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} f$$

• If $\frac{\delta f}{f_0} \sim 1$ is present, a resummed expansion follows the *ansatz* suggested by Pratt-Torrieri-Bernhard [PRC **103**, 064903 (2021)]

$$f = \frac{\mathcal{Z}_{\Pi}}{\det(\Lambda)} \left[\exp\left(\frac{\sqrt{|\vec{p'}|^2 + m^2}}{T}\right) + a \right]^{-1} a = \begin{cases} 1 & \text{Bose} - \text{Einstein} \\ 0 & \text{Boltzmann} \\ -1 & \text{Fermi} - \text{Dirac} \end{cases}$$

https://en.wikipedia.org/wiki/Stokes%27_theorem

$$\begin{split} \mathcal{Z}_{\Pi} &= \frac{\Pi + P(\varepsilon)}{L_{21}} & \vec{p}' = \Lambda^{-1}\vec{p} \\ \Lambda_{ij} &= (1 + \lambda_{\Pi})\delta_{ij} + \frac{\pi_{ij}T}{2J_{32}} & J_{rq} \propto \int \frac{d^3p}{(2\pi)^3p^0} (p \cdot u)^{r-2q} (-p \cdot \Delta \cdot p)^q f_0 (1 + af_0) \\ L_{rq} \propto \int \frac{d^3p}{(2\pi)^3p^0} (p \cdot u)^{r-2q} (-p \cdot \Delta \cdot p)^q f \end{split}$$

 Converting fluid degrees of freedom to particle distributions via the Cooper-Frye prescription

$$p^{0} \frac{d^{3}N}{d^{3}p} = \frac{1}{(2\pi)^{3}} \int d^{3}\Sigma_{\mu} p^{\mu} f$$

- The approximations for *f* are :
 - Grad moment approximation (up to 2nd moment) linearizes $f \rightarrow f_0 + \delta f$
 - Chapman-Enskog (small) gradient approximation linearizes $f \rightarrow f_0 + \delta f$
 - Pratt-Torrieri-Bernhard deformed (thermal-like) distribution (non-linear f)

https://en.wikipedia.org/wiki/Stokes%27_theorem

• The goal is to investigate the constraints on the shear (η) and bulk (ζ) viscosity from measurements of $p^0 \frac{d^3N}{d^3p}$ using various hadrons & contrast various f results.

• Elliptic Flow

- A nucleus-nucleus collision is typically not head on; an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is introduced, where 0-10% being the 10% most head-on collisions, while 40-50% being semi-peripheral collisions shown.

• Elliptic Flow

- A nucleus-nucleus collision is typically not head on; an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is introduced, where 0-10% being the 10% most head-on collisions, while 40-50% being semi-peripheral collisions shown.

• Elliptic Flow

- A nucleus-nucleus collision is typically not head on; an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is introduced, where 0-10% being the 10% most head-on collisions, while 40-50% being semi-peripheral collisions shown.

• To describe the angular (ϕ) momentum distribution (in x-y plane, i.e. \vec{p}_{\perp}), use a Fourier decomposition (i.e. flow coefficients) v_n

$$\frac{dN}{dMd\eta_p p_{\perp} dp_{\perp} d\phi} = \frac{1}{2\pi} \frac{dN}{dMd\eta_p p_{\perp} dp_{\perp}} \left[1 + \sum_n v_n \cos(n\phi) \right] \qquad \qquad \eta_p = \frac{1}{2} \log\left[\frac{E_p + p^z}{E_p - p^z} \right]$$

• Second Fourier coefficient: elliptic flow (v_2) is the largest.

• Elliptic Flow

- A nucleus-nucleus collision is typically not head on; an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is introduced, where 0-10% being the 10% most head-on collisions, while 40-50% being semi-peripheral collisions shown.

• To describe the angular (ϕ) momentum distribution (in x-y plane, i.e. \vec{p}_{\perp}), use a Fourier decomposition (i.e. flow coefficients) v_n

$$\frac{dN}{dMd\eta_p p_{\perp} dp_{\perp} d\phi} = \frac{1}{2\pi} \frac{dN}{dMd\eta_p p_{\perp} dp_{\perp}} \left[1 + \sum_n v_n \cos(n\phi) \right] \qquad \qquad \eta_p = \frac{1}{2} \log\left[\frac{E_p + p^z}{E_p - p^z} \right]$$

- Second Fourier coefficient: elliptic flow (v_2) is the largest.
- The more circular the \vec{p}_T -distribution \Rightarrow smaller v_2 , while the more elliptical \Rightarrow larger the v_2 .

A recent Bayesian analysis constraining $\frac{\eta}{s}$ and $\frac{\zeta}{s}$

• The Bayesian analysis constrains parameters in the fluid simulation using various LHC Pb-Pb

data $(\sqrt{s_{NN}} = 2.76 \ TeV \& \sqrt{s_{NN}} = 5.02 \ TeV)$:

- Multiplicity of identified particles
- Average p_T of identified particles
- Anisotropic flow v_n
- Fluctuations around $\langle p_T \rangle$

• Constraints using the resummed *ansatz* of Pratt-Torrieri-Bernhard for δf

A recent Bayesian analysis constraining $\frac{\eta}{s}$ and $\frac{\zeta}{s}$

• Constraints using the Pratt-Torrieri-Bernhard δf ansatz

$$\frac{\eta}{s}(T) = \left(\frac{\eta}{s}\right)_{\min} + \left(\frac{\eta}{s}\right)_{slope} (T - T_c) \left(\frac{T}{T_c}\right)^{\left(\frac{\eta}{s}\right) crv} \Theta(T - T_c) T_c = 0.154 \ GeV$$

$$\frac{\zeta}{s}(T) = \frac{\left(\frac{\zeta}{s}\right)_{\max} \left(\frac{\zeta}{s}\right)_{width}^{2}}{\left(\frac{\zeta}{s}\right)_{widht}^{2} + (T - T_{0})^{2}}$$

Initial condition / Pre-eq		QGP medium	
Norm	$13.9^{+1.2}_{-1.1} \ (2.76 \text{ TeV})$	$\eta/s { m min}$	$0.085^{+0.026}_{-0.025}$
	$18.5^{+1.8}_{-1.7}$ (5.02 TeV)	η/s slope	$0.83^{+0.83}_{-0.83} \ {\rm GeV^{-1}}$
p	$0.006\substack{+0.078\\-0.078}$	$\eta/s~{ m crv}$	$-0.37^{+0.79}_{-0.63}$
$\sigma_{ m fluct}$	$0.90\substack{+0.24\\-0.27}$	$\zeta/s \max$	$0.037\substack{+0.040\\-0.022}$
w	$0.96^{+0.04}_{-0.05}$ fm	ζ/s width	$0.029^{+0.045}_{-0.026} \text{ GeV}$
d_{\min}	$1.28^{+0.42}_{-0.53}$ fm	$\zeta/s T_0$	$0.177^{+0.023}_{-0.021} \text{ GeV}$
$ au_{\mathrm{fs}}$	$1.16^{+0.29}_{-0.25} \text{ fm}/c$	$T_{\rm switch}$	$0.152^{+0.003}_{-0.003} \text{ GeV}$

LHC @ $\sqrt{s_{NN}} = 2.76 \ TeV \& \sqrt{s_{NN}} = 5.02 \ TeV$

Modelling specific bulk (ζ/s) and shear (η/s) viscosities

• Bulk and shear viscosities were parametrized using 4-parameter functions

 $\frac{\zeta}{s}(T)$

 $\Lambda = w_{\zeta} \left[1 + \lambda_{\zeta} \left(T - T_{\zeta} \right) \right]$

$$\frac{\eta}{s}(T) = a_{\text{low}}(T - T_{\eta})\Theta(T_{\eta} - T) + \left(\frac{\eta}{s}\right)_{\text{kink}} + a_{\text{high}}(T - T_{\eta})\Theta(T - T_{\eta})$$

Comparisons w/ experimental data using Bayesian calibration

0.00

0

25

Centrality %

50

Comparisons w/ experimental data using Bayesian calibration

PRC 103 054904 (2021)

[•] Constraints on viscosities using only STAR RHIC $@\sqrt{s_{NN}} = 200 \ GeV$ data and Grad's δf

Comparisons w/ experimental data using Bayesian calibration

PRC 103 054904 (2021)

0.00

0

25

Centrality %

50

 Constraint on viscosities using RHIC and LHC data and Grad's δf

Combining different δf results using Bayesian Model Averaging

- The constraints on ζ/s and η/s from three different models
 - Grad's δf (blue)
 - Chapman-Enskog δf (red)
 - Pratt-Torrieri-Bernhard model (green)

Combining different δf results using Bayesian Model Averaging

- Computing the Bayes factor (i.e. Bayesian evidence) allows to say that there are
 - 5000:1 odds that the Grad model is better than the Chapman-Enskog model, or 3.6σ observation.
 - 3:1 odds that the Grad model is better than the Pratt-Torrieri-Bernhard model, or a 0.6 σ observation.
- Combining the three-models in proportion 5000:2000:1 using Bayesian Model Averaging (BMA), yields the robust constraints in orange. This is the first use of BMA in heavy-ion physics.

Conclusion and Outlook

- Modern simulations of heavy-ion collisions rely on a combination of relativistic dissipative fluid dynamics and far-off-equilibrium Boltzmann transport.
- Using hydrodynamics and Boltzmann transport, constraints on the QGP $\frac{\zeta}{s}(T)$ and $\frac{\eta}{s}(T)$ were obtained.
- These constraints are made more reliable by
 - Including multiple systems (RHIC and LHC)
 - Including an important theoretical systematic uncertainty δf along with Bayesian Model Averaging when extracting $\frac{\zeta}{s}(T)$ and $\frac{\eta}{s}(T)$.
- In the future, a more holistic Bayesian analysis using both hadrons as well as electromagnetic (EM) radiation will yield better constraints:
 - $\frac{\zeta}{s}(T)$ and $\frac{\eta}{s}(T)$ [PRC **93**, 044906 (2016); PRC **98**, 014902 (2018); PRC **101**, 044904 (2020)]
 - second order transport coefficients (e.g. τ_{π}) and $\delta T^{\mu\nu}$ initial conditions [PRC 94, 014904 (2016)]

Backup

Supercomputers used to perform calculations

- Obtained an allocation of several million core-hours on Stampede 2 at Texas Advanced Computing Center
- Software setup, testing, and calculations are done over a 2-year period
- The simulations results used to train a Gaussian Process Emulator (GPE) that efficiently interpolates between calculated results
- The acceleration provided by the GPE is crucial to obtain the Bayesian Posterior.

Evolution of the particle composition at different \sqrt{s}

Parton distribution function (PDF) in a proton

- The relative contribution of gluons inside a proton \uparrow as $\uparrow \sqrt{s}$
- This relative excess of gluons persists once nuclear PDFs are used.

 As a solution to the classical relativistic Liouville equation on an *n*-particle phase space distribution doesn't yet exist ⇒ approximations are in order.

- As a solution to the classical relativistic Liouville equation on an *n*-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).

- As a solution to the classical relativistic Liouville equation on an *n*-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).
 - This gives rise to ordered tower of coupled integro-differential equations in phase space known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.

- As a solution to the classical relativistic Liouville equation on an n-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).
 - This gives rise to ordered tower of coupled integro-differential equations in phase space known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.
 - Neglecting *n*-particle correlations $\forall n \ge 2 \Rightarrow$ Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{p} = C[f_{p}] \sim \int d\Phi_{p,k\to p'k'}^{2\to2} \left| \mathcal{M}_{p,k\to p'k'}^{2\to2} \right|^{2} f_{k}f_{k'}f_{p'}$$

- As a solution to the classical relativistic Liouville equation on an n-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).
 - This gives rise to ordered tower of coupled integro-differential equations in phase space known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.
 - Neglecting *n*-particle correlations $\forall n \ge 2 \Rightarrow$ Boltzmann equation for a single-particle distribution

$$p^{\mu}\partial_{\mu}f_{p} = C[f_{p}] \sim \int d\Phi_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \left| \mathcal{M}_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \right|^{2} f_{k}f_{k'}f_{p'}$$

• Expanding the Boltzmann equation up to second moment (rank-2 tensor) gives conservation equations of fluid dynamics

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = \langle p^{\mu}p^{\nu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}p^{\nu}f_{p}$$
where

$$\partial_{\mu}N^{\mu} = 0 \qquad \qquad N^{\mu} = \langle p^{\mu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}f_{p}$$

- As a solution to the classical relativistic Liouville equation on an n-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).
 - This gives rise to ordered tower of coupled integro-differential equations in phase space known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.
 - Neglecting *n*-particle correlations $\forall n \ge 2 \Rightarrow$ Boltzmann equation for a single-particle distribution

$$p^{\mu}\partial_{\mu}f_{p} = C[f_{p}] \sim \int d\Phi_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \left| \mathcal{M}_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \right|^{2} f_{k}f_{k'}f_{p'}$$

• Expanding the Boltzmann equation up to second moment (rank-2 tensor) gives conservation equations of fluid dynamics

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = \langle p^{\mu}p^{\nu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}p^{\nu}f_{p}$$
where
$$\partial_{\mu}N^{\mu} = 0 \qquad N^{\mu} = \langle p^{\mu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}f_{p}$$

- As a solution to the classical relativistic Liouville equation on an n-particle phase space distribution doesn't yet exist ⇒ approximations are in order.
- Instead of solving for each particle's distribution in the *n*-particle system, one solves for *n*-particle correlation functions (also useful for a QFT formulation).
 - This gives rise to ordered tower of coupled integro-differential equations in phase space known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.
 - Neglecting *n*-particle correlations $\forall n \ge 2 \Rightarrow$ Boltzmann equation for a single-particle distribution

$$p^{\mu}\partial_{\mu}f_{p} = C[f_{p}] \sim \int d\Phi_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \left| \mathcal{M}_{p,k \rightarrow p'k'}^{2 \rightarrow 2} \right|^{2} f_{k}f_{k'}f_{p'}$$

• Expanding the Boltzmann equation up to second moment (rank-2 tensor) gives conservation equations of fluid dynamics

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = \langle p^{\mu}p^{\nu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}p^{\nu}f_{p}$$
where
$$\partial_{\mu}N^{\mu} = 0 \qquad N^{\mu} = \langle p^{\mu} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}p^{0}} p^{\mu}f_{p}$$

• Boltzmann eq also EoMs for dissipative dofs...

• In high-energy collisions (w/ negligible μ_B), what is flowing?... That can only be energy density ϵ

 $u^{\mu} = \left(\gamma, \gamma \vec{\beta}\right)$ where $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$ $\gamma = (1 - \beta^2)^{-1/2}$ and $\vec{\beta} = \vec{v}/c$. Using natural units from how on $\Rightarrow c = 1$. Landau's flow definition

• Non-dissipative $T_0^{\mu\nu}$ can only take the form:

$$T_0^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) \Delta^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(\epsilon) (g^{\mu\nu} - u^{\mu} u^{\nu})$$

- Including dissipation gives rise to dissipative corrections $\delta T^{\mu\nu}$ to $T_0^{\mu\nu}$, namely Π and $\pi^{\mu\nu}$ $T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu} = T_0^{\mu\nu} - \Pi \Delta^{\mu\nu} + \pi^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$
- In the Navier-Stokes limit,

$$\pi_{NS}^{\mu\nu} = 2\eta \partial^{\langle\mu} u^{\nu\rangle} \qquad \Pi_{NS} = -\zeta \partial_{\mu} u^{\mu}$$

Already explained η ...

- ζ only \exists in compressible fluids. It's the response of the fluid to abrupt radial compression.
 - For incompressible fluids, rapid $\uparrow P_{ext}$ would \uparrow translational motion of molecules ($\uparrow T$) and $\pi^{\mu\nu}$.
- For compressible fluids, rapid $\uparrow P_{\text{ext}}$ can also excite rotational and vibrational motion of ٠ molecules, which is incorporated in Π . 52

• Relativistic dissipative hydrodynamics

 $\partial_{\mu} T^{\mu\nu} = 0$ $T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - [P(\varepsilon) + \Pi] \Delta^{\mu\nu} + \pi^{\mu\nu}$ $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}, \ \sigma^{\mu\nu} = \partial^{\langle \mu} u^{\nu \rangle}, \ \theta = \partial_{\mu} u^{\mu}$ Boltzmann equation gives $\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}$ $\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha}$ $-\tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma_{\alpha}^{\nu\rangle} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}$

- P(ε) use lattice EoS, and the goal is to constrain ζ and η via Bayesian analysis [all transport coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]
- About power counting: the r.h.s. of the PDE for Π and $\pi^{\mu\nu}$ contain up to 2nd order terms, in powers of two small quantities: [J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]
 - <u>Knudsen number</u>: $K_n = \frac{\lambda_{mfp}}{L}$ powers in microscopic scale (λ_{mfp}) and macroscopic scale (L). $2\eta\sigma^{\mu\nu}: \eta \sim \lambda_{mfp}$ while $\sigma^{\mu\nu} = \partial^{\langle \mu} u^{\nu \rangle} \sim \frac{1}{L} \Rightarrow K_{\pi} = 2\eta\sigma^{\mu\nu} \ll 1$ is first order K_{π} and so is $K_{\Pi} = -\zeta\theta \ll 1$.

• Relativistic dissipative hydrodynamics

 $\partial_{\mu} T^{\mu\nu} = 0$ $T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - [P(\varepsilon) + \Pi] \Delta^{\mu\nu} + \pi^{\mu\nu}$ $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}, \ \sigma^{\mu\nu} = \partial^{\langle \mu} u^{\nu \rangle}, \ \theta = \partial_{\mu} u^{\mu}$ Boltzmann equation gives $\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}$ $\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha}$ $-\tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma_{\alpha}^{\nu\rangle} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}$

- P(ε) use lattice EoS, and the goal is to constrain ζ and η via Bayesian analysis [all transport coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]
- About power counting: the r.h.s. of the PDE for Π and $\pi^{\mu\nu}$ contain up to 2nd order terms, in powers of two small quantities: [J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]
 - <u>Knudsen number</u>: $K_n = \frac{\lambda_{mfp}}{L}$ powers in microscopic scale (λ_{mfp}) and macroscopic scale (L). $2\eta\sigma^{\mu\nu}: \eta \sim \lambda_{mfp}$ while $\sigma^{\mu\nu} = \partial^{\langle \mu}u^{\nu \rangle} \sim \frac{1}{L} \Rightarrow K_{\pi} = 2\eta\sigma^{\mu\nu} \ll 1$ is first order K_{π} and so is $K_{\Pi} = -\zeta\theta \ll 1$.
 - <u>inverse Reynolds number</u>: counts powers of dissipative forces over equilibrium forces: $\Pi \ll P$, so Π is first order in $R_{\Pi}^{-1} = \frac{|\Pi|}{P} \ll 1$ and so is $R_{\pi}^{-1} = \frac{|\pi^{\mu\nu}|}{P} \ll 1$.

• Relativistic dissipative hydrodynamics

 $\partial_{\mu} T^{\mu\nu} = 0$ $T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - [P(\varepsilon) + \Pi] \Delta^{\mu\nu} + \pi^{\mu\nu}$ $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}, \ \sigma^{\mu\nu} = \partial^{\langle \mu} u^{\nu \rangle}, \ \theta = \partial_{\mu} u^{\mu}$

- Boltzmann equation gives $\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}$ $\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \phi_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha}$ $-\tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma_{\alpha}^{\nu\rangle} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}$
- P(ε) use lattice EoS, and the goal is to constrain ζ and η via Bayesian analysis [all transport coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]
- About power counting: the r.h.s. of the PDE for Π and $\pi^{\mu\nu}$ contain up to 2nd order terms, in powers of two small quantities: [J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]
 - <u>Knudsen number</u>: $K_n = \frac{\lambda_{mfp}}{L}$ powers in microscopic scale (λ_{mfp}) and macroscopic scale (L). $2\eta\sigma^{\mu\nu}: \eta \sim \lambda_{mfp}$ while $\sigma^{\mu\nu} = \partial^{\langle \mu}u^{\nu \rangle} \sim \frac{1}{L} \Rightarrow K_{\pi} = 2\eta\sigma^{\mu\nu} \ll 1$ is first order K_{π} and so is $K_{\Pi} = -\zeta\theta \ll 1$.
 - <u>inverse Reynolds number</u>: counts powers of dissipative forces over equilibrium forces: $\Pi \ll P$, so Π is first order in $R_{\Pi}^{-1} = \frac{|\Pi|}{P} \ll 1$ and so is $R_{\pi}^{-1} = \frac{|\pi^{\mu\nu}|}{P} \ll 1$.
 - In EoM for Π , $\pi^{\mu\nu}$ above, two kinds of second order terms $\exists: \delta_{\Pi\Pi}\Pi\theta \sim K_{\Pi}R_{\Pi}^{-1}$ while $\phi_7 \pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha} \sim R_{\pi}^{-2}$

Bayesian Prior for bulk (ζ/s) and shear (η/s) viscosities

• Bulk and shear viscosities were parametrized using 4-parameter functions

