Detecting Velocity Dependent Milli-Magnetic Dark Abelian Monopoles at the LHC

Tyrell Edward Umbach MSc Physics Department of Physics Concordia University

with

Mariana Frank, Concordia University, Montreal, Quebec Marc de Montigny, University of Alberta, Edmonton, Alberta Pierre-P. A. Ouimet, University of Regina, Regina, Saskatchewan

Outline of this Presentation

- Brief Introduction to MoEDAL-MAPP
- Dark Sector Models and Kinetic Mixing
- Kinetic Mixing and Milli-Magnetic Charges
- A New Approach: The Baines et al Effective Theory
- Future Work

Introducing MoEDAL-MAPP

Introducing MoEDAL-MAPP

Why Dark Sector Models?

- Dark sector models are theoretically well motivated by:
 - Naturalness (Ex: Craig and Howe, JHEP 1403 (2014) 140.)
 - Thermal dark matter (Ex: Pospelov, Ritz and Voloshin, Phys. Lett. B662 (2008) 53-61)
 - Electroweak baryogenesis (Morrissey and Ramsey-Musolf, New J.Phys. 14 (2012) 125003.)
- They also represent a generic expectation for physics beyond the SM. (Strassler and Zurek, Phys. Lett. B651 (2007) 374-379)

Kinetic Mixing and Maxwell's Equations (after field redefinition)

 $A \rightarrow A + \epsilon A_D$:

$$\begin{aligned} \partial_{\mu} F^{\mu\nu} &= eJ^{\mu} \\ \partial_{\mu} F^{\mu\nu}_{D} &= \epsilon eJ^{\mu} + e_{D}J^{\mu}_{D} + m^{2}_{D}A^{\nu}_{D} \\ \partial_{\mu} \tilde{F}^{\mu\nu}_{D} &= -\epsilon g_{D}K^{\mu}_{D} \\ \partial_{\mu} \tilde{F}^{\mu\nu}_{D} &= g_{D}K^{\mu}_{D} \end{aligned}$$

A. Hook and J. Huang, "Bounding millimagnetically charged particles with magnetars", Phys. Rev. D 96 (2017) 055010

Milli-Magnetically Charged Particles

Hook and Huang (Phys. Rev. D 96 (2017) 055010) show that:

$$\mathcal{L}_{\rm mMC} = i\overline{\psi}_D \left(\partial \!\!\!/ + ig\tilde{A}_D + iM_{\rm DM} \right) \psi_D - \frac{1}{4}A_{D\mu\nu}A_D^{\mu\nu} - \frac{\epsilon}{2}A_{D\mu\nu}B^{\mu\nu} + \cdots$$

Becomes

$$\mathcal{L}_{\rm mMC} = i\overline{\psi}_D \left(\partial \!\!\!/ + ig \tilde{A}_D - i\epsilon g \tilde{B} + iM_{\rm DM} \right) \psi_D - \frac{1}{4} A_{D\mu\nu} A_D^{\mu\nu} + \cdots$$

Under the field redefinition:

$$\tilde{A}_D \rightarrow \tilde{A}_D - \epsilon \tilde{B}$$

Hook and Huang also point out that:

• mMCP are confined objects:

At close distances (like quarks) they look like point sources.

At longer distances, the gauge fields arrange themselves to form strings between monopoles and anti-monopoles.

The mass of the dark photon sets the scale for where this transition happens.

• mMCP only behave like magnetically charged objects for distances $\geq \frac{1}{m_{\rm D}}$

The Baines et al Effective Theory

Baines et al introduced an effective theory for monopoles with a velocity dependent charge.

$$\begin{aligned} \mathscr{L} &= -\frac{1}{4} A_{\mu\nu} A^{\mu\nu} + i \bar{\psi} (\partial - i g_{\beta} A - m) \psi - \frac{i}{4} g_{\beta} \kappa A_{\mu\nu} \psi [\gamma^{\mu}, \gamma^{\nu}] \bar{\psi} \\ g^{2}(\beta) &= g^{2} \beta^{2\delta} \quad \delta = 0, 1 \end{aligned}$$

We propose to model dark monopoles using a version of this effective theory coupled to the standard model via kinetic mixing:

$$\begin{aligned} \mathscr{L}_{A,A_D} &= \mathscr{L}_{SM} - \frac{\epsilon^2}{4} A^D_{\mu\nu} A^{\mu\nu}_D + i\bar{\psi}_D (\partial - ig^D_\beta A_D - i\epsilon g^D_\beta A - m_D) \psi_D \\ &- \frac{i}{4} g^D_\beta \kappa_D A^D_{\mu\nu} i\bar{\psi}_D [\gamma^\mu, \gamma^\nu] \psi_D + \frac{i\epsilon}{4} g^D_\beta \kappa_D A_{\mu\nu} i\bar{\psi}_D [\gamma^\mu, \gamma^\nu] \psi_D \end{aligned}$$

Baines, S., Mavromatos, N. E., Mitsou, V. A., Pinfold, J. L., & Santra, A. (2018). Monopole production via photon fusion and Drell–Yan Processes: MadGraph implementation and perturbativity via velocity-dependent coupling and magnetic moment as novel features. *The European Physical Journal C*, 78(11). https://doi.org/10.1140/epjc/s10052-018-6440-6 The analytic form of the fermionic cross section is:

The only significant difference from Baines *et al* is the factor of ϵ^2 for Drell-Yan $\sigma = \frac{10\pi\epsilon^2\beta\alpha_{\rm e}\alpha_{\rm g}(\beta)}{27s_{\rm qq}} \left(3 - \beta^2 - (2\beta^2 - 3)\kappa^2s_{\rm qq} + 6\kappa\sqrt{s_{\rm qq} - \beta^2s_{\rm qq}}\right)$

Similarly, the difference from Baines *et al* is the factor of e^4 for photon-fusion

Baines, Mavromatos, Mitsou, Pinfold & Santra, Eur. Phys. J. C (2018) 78:966

MadGraph results for Drell-Yan Monopole Production Mechanism at LHC scale

 β Dependent Case

MadGraph results for Photon-Fusion Monopole Production Mechanism at LHC scale

 β Dependent Case

MadGraph results comparison of both mechanisms for various values of ϵ

 β Dependent Case

Future Work

- Look at cosmological implications to determine allowable range of the parameters in the theory (self-interaction, etc)
- Modify physics list in Geant4 to simulate energy loss for dark monopoles with velocity dependent charge for interaction with MAPP detector
- Investigate phenomenology of these dark sector objects at MAPP

Thank you very much.

MadGraph results for both mechanisms with proton beam comparison plot β Dependent Case

