QUADRATIC LEVEL FULL ELECTROWEAK LEPTONIC CORRECTIONS WITH COVARIANT APPROACH

Winter Nuclear \& Particle Physics Conference

WNPPC 2024

MAHUMM GHAFFAR
PHD CANDIDATE MEMORIAL UNIVERSITY OF NEWFOUNDLAND
SUPERVISORS: DR. ALEKSANDRS ALEKSEJEVS AND DR. SVETLANA BARKANOVA

TABLE OF CONTENTS

table of contents

\author{

- Motivation
}

TABLE OF CONTENTS

- Motivation
- Introduction to covariant approach

TABLE OF CONTENTS

- Motivation
- Introduction to covariant approach
- Full electroweak $e^{-} p$ scattering with tree level and NLO level graphs

TABLE OF CONTENTS

- Motivation
- Introduction to covariant approach
- Full electroweak $e^{-} p$ scattering with tree level and NLO level graphs
- Tree level, one loop level and quadratic level leptonic tensor calculations

TABLE OF CONTENTS

- Motivation
- Introduction to covariant approach
- Full electroweak $e^{-} p$ scattering with tree level and NLO level graphs
- Tree level, one loop level and quadratic level leptonic tensor calculations
- Parity violating asymmetry calculations via leptonic/hadronic tensor for distinguishable target particle

table of contents

- Motivation
- Introduction to covariant approach
- Full electroweak $e^{-} p$ scattering with tree level and NLO level graphs
- Tree level, one loop level and quadratic level leptonic tensor calculations
- Parity violating asymmetry calculations via leptonic/hadronic tensor for distinguishable target particle
- Results

TABLE OF CONTENTS

- Motivation
- Introduction to covariant approach
- Full electroweak $e^{-} p$ scattering with tree level and NLO level graphs
- Tree level, one loop level and quadratic level leptonic tensor calculations
- Parity violating asymmetry calculations via leptonic/hadronic tensor for distinguishable target particle
- Results
- Future goals

MOTIVATION

- The theory of Standard Model (SM) \rightarrow unifies Electromagnetic, Weak and Strong interactions \rightarrow can make predictions that match experiments to one part in ten billion.
- SM limitations \rightarrow don't include gravity, dark matter/dark energy existence, hierarchies of scale related to Higgs boson etc.
- Theoretical door open for Beyond the SM (BSM) physics to be observed at TeV scale \rightarrow but till date no concrete evidence of BSM at 13 TeV centre-of-mass energy at LHC.
- Low energy precision physics becomes important \rightarrow provides a way to reach mass scales not directly accessible at existing high-energy colliders.
- We are doing precision physics with full electroweak Parity Violating (PV) Asymmetry \rightarrow achieve by calculating the higher order corrections up to quadratic level (NNLO α^{4}) using Covariant/ leptonic tensor approach.

LEPTONIC TENSOR AND INTRODUCTION TO COVARIANT APPROACH

LEPTONIC TENSOR AND
 INTRODUCTION TO COVARIANT APPROACH

- First introduced by Bardin and Shumeiko in 1976 (Nuclear Physics B127) to extract the infrared divergence from the lowestorder bremsstrahlung cross section.

LEPTONIC TENSOR AND
 INTRODUCTION TO COVARIANT APPROACH

- First introduced by Bardin and Shumeiko in 1976 (Nuclear Physics B127) to extract the infrared divergence from the lowestorder bremsstrahlung cross section.
- Recently used by Afanasev et al. (Phys. Rev. D 66) to calculate QED radiative
 corrections in processes of exclusive Pion electroproduction.

WHAT IS A COVARIANT APPROACH?

COVARIANT APPROACH WITH LEPTONIC-HADRONIC TENSORS

- The differential cross section of general lepton-lepton/hadron scattering can be obtained by:

$$
d \sigma \sim L^{\mu \nu} L_{\mu \nu} \text { or } d \sigma \sim L^{\mu \nu} W_{\mu \nu}
$$

- where $W_{\mu \nu}$ is the hadronic tensor which in case of elastic $e^{-} p$ scattering:

$$
W_{\mu \nu}=H_{1} g_{\mu \nu}+H_{2} p_{1 \mu} p_{1 \nu}+H_{3} p_{2 \mu} p_{2 \nu}+H_{4} p_{1 \mu} p_{2 \nu}+H_{5} p_{2 \mu} p_{1 \nu}+H_{6} \epsilon_{\mu, \nu, p_{1}, p_{2}}
$$

where p_{1} and p_{2} are incoming and outgoing protons momenta. $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$ and H_{6} are the hadronic structure functions which can be extracted from experimental data.

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

$$
\left(\mathrm{m}, k_{1}\right)
$$

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

FULL ELECTROWEAK $e^{-} p$ SCATTERING

- Elastic $e^{-} p$ scattering is studied up to the NNLO level considering all SM particles in the loop.
- A longitudinally polarized e^{-}scatters off an unpolarized proton target

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

One loop level Examples

One loop level Examples

One loop level Examples

One loop level Examples

One loop level Examples

One loop level Examples

One loop level Examples

One loop level Examples

307 graphs

TREE-LEVEL LEPTONIC TENSOR ($\alpha-O R D E R$)

$$
|M|^{2} \propto\left|\xrightarrow[0]{k_{1}} \sum_{z \text { zmatirn }}^{k_{2}}\right|^{2} \mu \nu
$$

- For tree-level upper part of the diagram (say $e^{-} p$ scattering), one can calculate leptonic tensor which is:

$$
L_{\mu \nu}^{0} \propto 4 \pi \alpha\left(\left(l_{1}\right) g_{\mu \nu}+\left(l_{2}\right) k_{2 \mu} k_{1 \nu}+\left(l_{3}\right) k_{1 \mu} k_{2 \nu}+\ldots\right)
$$

where k_{1}, k_{2} are incoming and outgoing e^{-}momenta and $l_{1,2 . \text {. }}$ are tree level leptonic tensor structure functions.

ELECTROWEAK LEPTONIC TENSOR STRUCTURE FUNCTIONS

- In case of tree level polarized $e^{-} p$ scattering:
- With photon (γ) as a mediator \rightarrow Five leptonic tensor structure functions
$g^{\mu \nu}, k_{2}^{\mu} k_{1}^{\nu}, k_{1}^{\mu} k_{2}^{\nu}, \epsilon^{s_{1} \mu \nu k_{1}}, \epsilon^{s_{1} \mu \nu k_{2}}$
where $s_{1} \rightarrow$ helicity reference vector of the incoming electron.
- With Z boson or γZ mixing \rightarrow Eight leptonic tensor structure functions

$$
g^{\mu \nu}, k_{2}^{\mu} s_{1}^{\nu}, k_{2}^{\nu} s_{1}^{\mu}, k_{1}^{\mu} k_{2}^{\nu}, k_{2}^{\mu} k_{1}^{\nu}, \epsilon^{s_{1} \mu \nu k_{1}}, \epsilon^{s_{1} \mu \nu k_{2}}, \epsilon^{\mu \nu k_{1} k_{2}}
$$

NEXT TO THE LEADING ORDER (NLO) LEPTONIC TENSOR $\left(\alpha^{2}-O R D E R\right)$

- The NLO leptonic tensor can be obtained by multiplying tree-level upper diagram with the sum of oneloop level SE and triangular diagrams.

$$
L_{\mu \nu}^{N L O}=\left(m_{1}\right) g_{\mu \nu}+\left(m_{2}\right) k_{1 \nu} k_{2 \mu}+\left(m_{3}\right) k_{1 \mu} k_{2 \nu}+\left(m_{4}\right) k_{1 \mu} k_{1 \nu}+\left(m_{5}\right) k_{2 \mu} k_{2 \nu}+\ldots \ldots
$$

Where $m_{1,2,3 . . .}$ are leptonic structure functions which depend on the momentum transfer " t " and written in terms of Passarino-Veltman integral functions. We used LoopTools Mathematica package to calculate them.

- With photon $(\gamma), Z$ boson or γZ mixing $\rightarrow 19$ leptonic tensor structure functions

NEW RESULTS: QED AND ELECTROWEAK QUADRATIC

 LEPTONIC TENSOR (α^{3}-ORDER)

- The quadratic leptonic tensor can be obtained by squaring the sum of one-loop level SE and triangular diagrams. Tensor form is the same as that of NLO and is given by:

$$
L_{\mu \nu}^{\text {Quadratic }}=\left(n_{1}\right) g_{\mu \nu}+\left(n_{2}\right) k_{1 \nu} k_{2 \mu}+\left(n_{3}\right) k_{1 \mu} k_{2 \nu}+\left(n_{4}\right) k_{1 \mu} k_{1 \nu}+\left(n_{5}\right) k_{2 \mu} k_{2 \nu}+\ldots
$$

where $n_{1,2,3 . .}$ are quadratic leptonic structure functions of the order of α^{3}.

- With photon $(\gamma), Z$ boson or $\gamma \mathrm{Z}$ mixing $\boldsymbol{\rightarrow} \mathbf{2 1}$ leptonic tensor structure functions.
- We kept mass of the electron throughout these calculations to account precision.

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right)$ Scattering versus Scattering angle $\theta_{C M}$

$$
\left(e^{-} p\right) \text { Tree level, NLO and NNLO level } A_{P V} \text { versus } \theta_{C M} \quad A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right.$) Scattering versus Scattering angle $\theta_{C M}$

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right.$) Scattering versus Scattering angle $\theta_{C M}$
——Tree $A_{P V} \sim$ - 294ppb

- NLO $A_{P V} \sim-214 p p b$
$\left(e^{-} p\right)$ Tree level, NLO and NNLO level $A_{P V}$ versus $\theta_{C M}$

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right)$ Scattering versus Scattering angle $\theta_{C M}$

$$
\left(e^{-} p\right) \text { Tree level, NLO and NNLO level } A_{P V} \text { versus } \theta_{C M} \quad A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right)$ Scattering versus Scattering angle $\theta_{C M}$

$$
\left(e^{-} p\right) \text { Tree level, NLO and NNLO level } A_{P V} \text { versus } \theta_{C M} \quad A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

Graphs for Tree level, NLO and Quadratic level Parity Violating Asymmetry $\left(A_{P V}\right)$ for

 $\left(e^{-} p\right.$) Scattering versus Scattering angle $\theta_{C M}$

$$
\left(e^{-} p\right) \text { Tree level, NLO and NNLO level } A_{P V} \text { versus } \theta_{C M} \quad A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor $\left(\alpha^{3}\right)$.

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor $\left(\alpha^{3}\right)$.

ADVANTAGES OF USING COVARIANT APPROACH

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($e^{-} \mu, \mu^{-} p$).
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

ADVANTAGES OF USING COVARIANT APPROACH

Quadratic/NNLO level corrections

- This is a general approach and can be used to calculate any scattering process with a distinguishable target ($\left.e^{-} \mu, \mu^{-} p\right)$.
- A good approach to calculate higher order effects by squaring one loop level diagrams e.g. our Quadratic leptonic tensor (α^{3}).

RESULTS:

- We have produced results for the QED and full electroweak quadratic leptonic tensors which were not calculated previously. We cross checked results using non covariant approach.
- We make predictions for the $e^{-} p$ NNLO (quadratic) level radiative corrections. Our $e^{-} p$ results are particularly useful in background analysis for the proposed Electron-Ion Collider experiment.
- Radiative corrections in $A_{P V} \rightarrow$ calculate the most precise value of the proton's weak charge: $Q_{W}^{P}=1-4 \sin ^{2} \theta_{W} \rightarrow$ Any discrepancy may enable us to search for the physics beyond the Standard Model.

FUTURE GOALS

- We are calculating reducible up to two loop level electroweak leptonic tensors \rightarrow another way to calculate quadratic level radiative corrections.
- For completeness, our next goal is to also include soft and hard photon bremsstrahlung cross sections in the results.
- These theoretical predictions will be important for many experimental programs such as QWEAK, MOLLER (background studies), EIC etc. searching for physics beyond the Standard Model at the precision frontier.

REFERENCES FOR BOX DIAGRAMS

[1] M. Gorchtein, Phys. Rev. C 73, 055201 (2006)
[2] Peter G. Blunden et al., Physical Review Letters 91(14)

- We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Thanks for listening!

Memorial
University of Newfoundland

