What has the LHC taught us about the Standard Model?

6

3

le.

Heather Russell, University of Victoria VISPA Research Centre WNPPC – 17 February 2024

University of Victoria

(aside from discovering the Higgs boson)

Piste map

Introduction to the Standard Model and LHC physics

Why we want to do measurements of the Standard Model

Four topics for discussion:

- 1. Measuring the contents of the proton
- 2. Rare electroweak processes (quartic gauge couplings)
- 3. Top quark measurements
- 4. What the Standard Model is missing

Discovery timeline

4

*histograms are not stacked

- 1. Does the Standard Model accurately describe all the particle interactions it predicts?
- 2. Are we accurately simulating what the Standard Model predicts happens @ the LHC?

At the LHC, we collide (mainly) protons at very, very high energies

* not to scale

** not an accurate depiction of protons

*** not an accurate depiction of bunches

Particle detectors @ the LHC (e.g. ATLAS)

Learn more about the ATLAS detector: **atlas.cern/discover/detector/** Or view it on <u>google streetview</u>

Inner detector [Paths of charged particles]

Particle detectors @ the LHC (e.g. ATLAS)

Learn more about the ATLAS detector: **atlas.cern/discover/detector/** Or view it on <u>google streetview</u> Calorimeters

[energy of hadrons, electrons, and photons]

Particle detectors @ the LHC (e.g. ATLAS)

Learn more about the ATLAS detector: **atlas.cern/discover/detector/** Or view it on <u>google streetview</u> Muon detector

[Identification and paths of muons]

ATLAS produces a **different signal** for each particle

Plots in particle physics

Measurement of a **Standard Model processes**

Plots in particle physics

Requirement on events to be in the plot

Measurement of a **Standard Model processes**

Observing particles or processes

Test the **null hypothesis**: measure the probability of observing what you see, or more extreme, if the particle/process did **not** exit.

p-value	probability	N- σ
0.05	95%	1.64 σ significance
0.0013	99.87%	3 σ significance "evidence"
0.0000003	99.99997%	5 σ significance "observation"
		One-sided!

How likely would that data shape be if there were **no** signal?

1. What are we actually colliding?

Parton distribution functions

measure the "strangeness" of the proton:

Eur. Phys. J. C 82 (2022) 438

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2020-32/

Parton distribution functions

measure the "strangeness" of the proton:

2. Observations of rare electroweak processes

The Standard Model

Interactions of weak bosons

$$\mathcal{L}_{EW,WZA} = \begin{bmatrix}
ig \cos \theta_{W} [(W_{\mu}^{-}W_{\nu}^{+} - W_{\nu}^{-}W_{\mu}^{+})\partial^{\mu}Z^{\nu} + W_{\mu\nu}^{+}W^{-\mu}Z^{\nu} - W_{\mu\nu}^{-}W^{+\mu}Z^{\nu}] \\
+ ig \sin \theta_{W} [(W_{\mu}^{-}W_{\nu}^{+} - W_{\nu}^{-}W_{\mu}^{+})\partial^{\mu}A^{\nu} + W_{\mu\nu}^{+}W^{-\mu}A^{\nu} - W_{\mu\nu}^{-}W^{+\mu}A^{\nu}] \\
+ g^{2} \cos^{2} \theta_{W} (W_{\mu}^{+}W_{\nu}^{-}Z^{\mu}Z^{\nu} - W_{\mu}^{+}W^{-\mu}Z_{\nu}Z^{\nu}) \\
+ g^{2} \sin^{2} \theta_{W} (W_{\mu}^{+}W_{\nu}^{-}A^{\mu}A^{\nu} - W_{\mu}^{+}W^{-\mu}A_{\nu}A^{\nu}) \\
+ g^{2} \sin \theta_{W} \cos \theta_{W} [W_{\mu}^{+}W_{\nu}^{-}(Z^{\mu}A^{\nu} + Z^{\nu}A^{\mu}) - 2W_{\mu}^{+}W^{-\mu}Z_{\nu}A^{\nu})] \\
+ \frac{1}{2}g^{2} (W_{\mu}^{+}W_{\nu}^{-})(W^{+\mu}W^{-\nu} - W^{+\nu}W^{-\mu})
\end{bmatrix}$$

all terms with **four** interacting bosons come with a factor of $g^2(g < 1) \rightarrow$ this means they are **extra suppressed**

Triple couplings

Rare electroweak processes @ the LHC

[featured in the next talk (A. Ambler)]

Vector boson scattering

Vector boson scattering

Two well separated jets, with no jets in between

Electroweak production and backgrounds

Signal

Jets (quarks) are produced via electroweak interactions

Background

Jets (quarks) are produced via strong interactions

First observations @ the LHC - ZZjj

Observation of electroweak ZZjj production! $\sigma_{EW}^{zzjj} = 0.82 \pm 0.21 \text{ fb}$

➔ One of the smallest cross-sections observed/measured @ the LHC

LHC as a photon collider

- **Protons** (and ions!) can radiate photons
- If photons are radiated from both beams, the photons can interact inelastically, while the protons themselves stay intact

LHC as a photon collider

Observed significance: 8.4 σ

Fiducial cross-section of $\gamma \gamma \rightarrow WW$: 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb

3. What have we learned about the top quark at the LHC?

Four top quark production

Each top quark decays to a *b* quark and a *W* boson

- many different possible final states
- huge amount of activity in the detector
- Observed significance of 4.3σ **"evidence"**

Eur. Phys. J. C 80 (2020) 1085

Ratio measurements allow for the cancellation of many experimental and theoretical uncertainties -> Standard Model still operational at 13.6 TeV!

Observation of quantum entanglement

Calculate the **"entanglement marker" D** with $\cos \varphi$, the scalar product of **lepton directions** in the *tt* rest frame:

$$D = -3 \cdot \langle \cos \varphi \rangle$$

Observation of quantum entanglement

Where do we go next?

4. What is the Standard Model missing?

The Standard Model

Measurements as a tool for discovery

arXiv:2310.04350

what have we learned?

- 1. There is still a huge amount to learn about how we *implement* the Standard Model
- 2. The Standard Model does a very, very good job at describing LHC collisions
- 3. We can search for BSM effects with measurements of Standard Model processes

Some extra resources

- All public ATLAS results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome</u>
- All ATLAS Physics Briefings:
 - <u>https://atlas.cern/Updates/Briefing</u>
- Excellent summary of top quark entanglement: <u>https://indico.cern.ch/event/1328004/contributions/5664732/attachments/</u> <u>2763386/4812858/atlas_entanglement.pdf</u>
- Visit ATLAS on google streetview: <u>google streetview</u>
- Watch me talk about how we select ATLAS events:
 - https://www.youtube.com/watch?v=06ICXSV72Y0

The Standard Model

Increasing importance?

Subatomic Particle, Key to Basic Forces, Reported Discovered

By WALTER SULLIVAN

After a 40-year search that has intrigued physicists around the world, a team of scientists has reported discovery of the elusive "W" particle, a key member of the family of subatomic particles that seem to control the behavior of all matter.

The W particle has been sought for so long because it was assumed to carry one of nature's four basic forces, the socalled weak force, thought to play an essential role in the sun's generation of energy and to be responsible for a common form of radioactivity.

Moreover, the scientists believe that the discovery represents the strongest support so far for unification of two of these forces, the electromagnetic and the weak. It may therefore be a crucial step toward validating the so-called grand unification theories, which hold that all of nature's basic forces may have evolved from a single force.

Fireball of Energy Created

The W particle was identified, the scientists said, from the fallout of tremendous fireballs of energy created last fall with the force of 540 billion electron volts in the colliding particle machine, or atom smasher, at CERN, the atomic research center near Geneva.

The energy bursts were generated inside the machine by shooting billions of protons (which, with neutrons make up the nuclei of atoms) at high speed

Utilitie Blass (Berli Print Print)	The?	New H	lork @	imes	Ander Stationer
	TANK IN THE OWNER.				
-		PLANE NUKER SAYS IT NEEDNOERSTOOD PROVIDERS WITH KE	SENATE RE ON BALAI CLOSE VO	JECTS AMI VCING THE	ENDMEN BUDGE V TO G.O
		Intel Property and	NO. L COMMON		REA TO DENOC
	15			-	in Talibul Rat Data Dati No. 1 data 21 kg T
and an other	1				
Big Gamble	a. Lost Bein			- 17 10.00	
Addition of the second	Resauring for Dark		As 2 Dahotara Folio Ilack	Brand Fast, form Approve	
			1000000000	Million of	
ALCONT AND A DESCRIPTION	A.T. LAPTER		NAME OF TAXABLE	NUMBER OF	
1993526	Transaction and the second	STATISTICS.			
Elusive Atomi	c Particle Pour	d by Physicists		Applies Ex-Presser	
				An Madia Protector Anno 1997 Anno 1997	
The second second second second	APPENDING THE	the state of the state			
	Prosecutor In Sy	resolution of the organithetic, her O	Weer Is Indicted		Part of the lot
	Science 1	restriction for O			
	Tracetory & So Proceeder & So Constantion Constantion Constantion				
	Prosecutor & Sp Prosecutor & Sp Prosec	B			

W boson, 1983

top quark, 1995

the quarks and gluons inside the proton undergo inelastic interactions and produce new particles

protons additionally contain a sea of quark-antiquark pairs and gluons, all of which can interact

When protons collide, new particles are produced

For example...

But why can't we just save all collisions and check them out later, rather than filtering in real-time?

• Each collision is around 1 MB when we save it to disk

All data (2016): = ~ 300 billion collisions 300 petabytes (3 hours @ 30 MHz)

bunches collide every 25ns (with gaps \rightarrow 30 MHz)

~36 *p-p* collisions **per bunch collision**

we choose interesting* collisions to record at ~1.5 kHz

we choose interesting* collisions to record at ~1.5 kHz

How do we decide what types of events to save?

Things we know exist and want to study Things that we've thought of that might exist that we want to search for Things we haven't quite thought of yet but might want to look for in the future

How do we decide what types of events to save?

Things that we've thought of that might exist that we want to search for Things we haven't quite thought of yet but might want to look for in the future

Things we know exist and want to study

60

X

Angular variables for ZZ -> 4l CP properties

61

arXiv:2310.04350

Four top quark production

Each top quark decays to a *b* quark and a *W* boson

• many different possible final states

huge amount of activity in the detector

Observed significance of 4.3σ (expected 2.4σ)

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_{\mu} g^b_{\nu} g^d_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_{\mu} g^b_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\mu} g^e_{\mu} g^e_{\mu} g^e_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\mu} g^e_{\mu}$ $g^2 s^2_w A_\mu A_\mu \phi^+ \phi^- + rac{1}{2} i g_s \, \lambda^a_{ij} (ar q^\sigma_i \gamma^\mu q^\sigma_j) g^a_\mu - ar e^\lambda (\gamma \partial + m^\lambda_e) e^\lambda - ar
u^\lambda (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda - ar u^\lambda_j (\gamma \partial + m^\lambda_
u)
u^\lambda_j (\gamma \partial + m^\lambda_
u$ $m_u^{\lambda} u_j^{\lambda} - ar{d}_j^{\lambda} (\gamma \partial + m_d^{\lambda}) d_j^{\lambda} + i g s_w A_{\mu} \left(-(ar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + rac{2}{3} (ar{u}_j^{\lambda} \gamma^{\mu} u_j^{\lambda}) - rac{1}{3} (ar{d}_j^{\lambda} \gamma^{\mu} d_j^{\lambda})
ight) +$ $M^2 W^+_\mu W^-_\mu - rac{1}{2} \partial_
u Z^0_\mu \partial_
u Z^0_\mu - rac{1}{2c^2_w} M^2 Z^0_\mu Z^0_\mu - rac{1}{2} \partial_\mu A_
u \partial_\mu A_
u - igc_w (\partial_
u Z^0_\mu (W^+_\mu W^-_
u - igc_w (W^+$ $\frac{ig}{4c_w}Z^0_{\mu}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^2_w-1-\gamma^5)e^{\lambda})+(\bar{d}^{\lambda}_{j}\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)d^{\lambda}_{j})+$ $W^+_{
u}W^-_{\mu}) - Z^0_{
u}(W^+_{\mu}\partial_{
u}W^-_{\mu} - W^-_{\mu}\partial_{
u}W^+_{\mu}) + Z^0_{\mu}(W^+_{
u}\partial_{
u}W^-_{\mu} - W^-_{
u}\partial_{
u}W^+_{\mu})) -$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}{}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $igs_w(\partial_
u A_\mu (W^+_\mu W^-_
u - W^+_
u W^-_\mu) - A_
u (W^+_\mu \partial_
u W^-_
u - W^-_\mu \partial_
u W^+_\mu) + A_\mu (W^+_
u \partial_
u W^-_
u - W^-_\mu) + A_\mu (W^+_
u \partial_
u W^-_
u - W^+_
u - W^-_
u) + A_\mu (W^+_
u - W^+_
u) + A_\mu (W^+_
u - W^+_
u) + A_\mu (W^+_
u) + A_\mu (W^+$ $W^{-}_{
u}\partial_{
u}W^{+}_{\mu})) - rac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{
u}W^{+}_{
u}W^{-}_{
u} + rac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{
u}W^{+}_{\mu}W^{-}_{
u} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{
u}W^{-}_{
u} - Q^{2}_{\mu}W^{+}_{\mu}))$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep}{}^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j})\right)+$ $Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) + g^2 s^2_w (A_{\mu}W^+_{\mu}A_{\nu}W^-_{\nu} - A_{\mu}A_{\mu}W^+_{\nu}W^-_{\nu}) + g^2 s_w c_w (A_{\mu}Z^0_{\nu}(W^+_{\mu}W^-_{\nu} - A_{\mu}A_{\mu}W^+_{\nu}W^-_{\nu}) + g^2 s_w c_w (A_{\mu}Z^0_{\nu}W^+_{\mu}W^-_{\nu}) + g^2 s_w c_w (A_{\mu}Z^0_{\nu}W^+_{\mu}W^-_{\mu}) + g^2 s_w c_w (A_{\mu}Z^0_{\mu}W^+_{\mu}W^-_{\mu}) + g^2 s_w (A_{\mu}Z^0_{\mu}W^+_{\mu}W^-_{\mu}) + g^2$ $\tfrac{ig}{2M\sqrt{2}} \phi^+ \left(-m_e^{\kappa} (\bar{\nu}^{\lambda} U^{lep}{}_{\lambda\kappa} (1-\gamma^5) e^{\kappa}) + m_{\nu}^{\lambda} (\bar{\nu}^{\lambda} U^{lep}{}_{\lambda\kappa} (1+\gamma^5) e^{\kappa} \right) +$ $-rac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(ar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1+\gamma^{5})
u^{\kappa})-m_{
u}^{\kappa}(ar{e}^{\lambda}U^{lep}_{\ \lambda\kappa}^{\dagger}(1-\gamma^{5})
u^{\kappa}
ight)-rac{g}{2}rac{m_{
u}^{\lambda}}{M}H(ar{
u}^{\lambda}
u^{\lambda})-rac{g}{2}rac{m_{
u}^{\lambda}}{M}H(ar{
u}^{\lambda}
u^{\lambda})+rac{g}{2}rac{m_{u}^{\lambda}}{M}H(ar{
u}^{\lambda})+rac{g}{2}rac{m_{u}^{$ $eta_h \left(rac{2M^2}{g^2} + rac{2M}{g} H + rac{1}{2} (H^2 + \phi^0 \phi^0 + 2 \phi^+ \phi^-)
ight) + rac{2M^4}{g^2} lpha_h \frac{g}{2}\frac{m_e^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^0(\bar{\nu}^{\lambda}\gamma^5\nu^{\lambda}) - \frac{ig}{2}\frac{m_e^{\lambda}}{M}\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\,M^R_{\lambda\kappa}\,(1-\gamma_5)\hat{\nu}_{\kappa}$ $g \alpha_h M \left(H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^- \right) \frac{1}{4} \overline{\nu_{\lambda}} M^R_{\lambda \kappa} (1-\gamma_5) \hat{\nu}_{\kappa} + \frac{ig}{2M\sqrt{2}} \phi^+ \left(-m^{\kappa}_d (\bar{u}^{\lambda}_j C_{\lambda \kappa} (1-\gamma^5) d^{\kappa}_j) + m^{\lambda}_u (\bar{u}^{\lambda}_j C_{\lambda \kappa} (1+\gamma^5) d^{\kappa}_j) + \right)$ $\tfrac{1}{8}g^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)$ $rac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(ar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(ar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}
ight)-rac{g}{2}rac{m_u^{\lambda}}{M}H(ar{u}_j^{\lambda}u_j^{\lambda})-rac{g}{2}rac{m_u^{\lambda}}{M}H(ar{u}_j^{\lambda}u_j^{\lambda})-rac{g}{2}rac{m_u^{\lambda}}{M}H(ar{u}_j^{\lambda}u_j^{\lambda})+rac{g}{2}rac{m_u^{\lambda}}{M}H(ar{u}_j^{\lambda}u_j^{\lambda})+rac{g}{2}rac{g}{2}rac{m_u^{\lambda}}{M}H(ar{u}_j^{\lambda}u_j^{\lambda})+rac{g}{2}rac{g}{2$ $gMW^+_{\mu}W^-_{\mu}H - rac{1}{2}grac{M}{c^2_{\mu\nu}}Z^0_{\mu}Z^0_{\mu}H \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g^c_{\mu} + \frac{g}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g^c_{\mu} + \frac{g}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g^c_{\mu} + \frac{g}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g^c_{\mu} + \frac{g}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) + \frac{g}{2}\frac{g}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) + \frac{g}{2}\frac{g}{2}\frac{g}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u_j^{\lambda}) + \frac{g}{2}\frac{g}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5 u$ $rac{1}{2}ig\left(W^+_\mu(\phi^0\partial_\mu\phi^--\phi^-\partial_\mu\phi^0)-W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)
ight)+$ $\frac{1}{2}g\left(W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c_{w}^{2}})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{+}+\bar{X}^{0}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c_{w}^{2}})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-M^{2})X^{-}+\bar{X}^{$ $\partial_\mu ar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu ar{Y} X^- - \partial_\mu ar{X}^+ ar{Y}) + igc_w W^-_\mu (\partial_\mu ar{X}^- X^0 M\left(\tfrac{1}{c_w} Z^0_\mu \partial_\mu \phi^0 + W^+_\mu \partial_\mu \phi^- + W^-_\mu \partial_\mu \phi^+ \right) - ig \tfrac{s^2_w}{c_w} M Z^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig s_w (W^+_\mu \phi^- - W^-_\mu \phi^+) + ig$ $\partial_\mu ar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu ar{X}^- Y - \partial_\mu ar{Y} X^+) + igc_w Z^0_\mu (\partial_\mu ar{X}^+ X^+ W^-_\mu \phi^+) - ig rac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) \partial_\mu \bar{X}^- X^-) + igs_w A_\mu (\partial_\mu \bar{X}^+ X^+ \tfrac{1}{4}g^2 W^+_\mu W^-_\mu \left(H^2 + (\phi^0)^2 + 2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) - \tfrac{1}{8}g^2 \tfrac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^- \right) \right)$ $\partial_{\mu} \bar{X}^{-} X^{-}) - rac{1}{2} g M \left(ar{X}^{+} X^{+} H + ar{X}^{-} X^{-} H + rac{1}{c_{w}^{2}} ar{X}^{0} X^{0} H
ight) + rac{1 - 2c_{w}^{2}}{2c_{w}} i g M \left(ar{X}^{+} X^{0} \phi^{+} - ar{X}^{-} X^{0} \phi^{-}
ight) +$ $\frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}ig^2 \frac{s_w^2}{c_w} Z^0_\mu H(W^+_\mu \phi^- - W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi$ ${1\over 2c_w} igM\left(ar{X}^0X^-\phi^+ - ar{X}^0X^+\phi^ight) + igMs_w\left(ar{X}^0X^-\phi^+ - ar{X}^0X^+\phi^ight) +$ $W^-_\mu \phi^+) + rac{1}{2} i g^2 s_w A_\mu H (W^+_\mu \phi^- - W^-_\mu \phi^+) - g^2 rac{s_w}{c_w} (2 c_w^2 - 1) Z^0_\mu A_\mu \phi^+ \phi^- - M^-_\mu \phi^+)$ $rac{1}{2} igM\left(ar{X}^+X^+\phi^0-ar{X}^-X^-\phi^0
ight)$.

Standard Model Production Cross Section Measurements

Status: February 2022

Parton distribution functions

How much of a proton is gluons?

What fraction of the proton's energy do the gluons carry?

← The gluons that would make heavy new particles

Eur. Phys. J. C 82 (2022) 438

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2020-32/

Vector boson scattering and unitarity

- Without the HWW vertex, do not have unitarity (rate explodes @ v. high energies)
 - VBS is an interesting probe of Higgs physics
- The calculation is gauge-dependent: different choices give different results
- We **measure** the coherent sum of all processes: electroweak production

Visualizing particle interactions

Visualizing particle interactions

Visualizing particle interactions

First observations @ the LHC – Wyy

The desired signal

Also signal

arXiv:2308.03041

The desired signal

Irreducible backgrounds

Also signal

32

The desired signal

Irreducible backgrounds

Also signal

Reducible "fake" backgrounds

- The LHC generates **a lot** of hadronic activity
- π^0 decays produced **two** (overlapping) photons

shape of reconstructed photon is different

photons are surrounded by hadronic activity

photon is not isolated

...and either one or both photons could be "faked":

Photon looks very photon-like

Photon is isolated in the calorimeters

Photon looks very photon-like

Photon has some energy surrounding it: $E_T^{iso} = \sum$ (energy in surrounding cells)

Event displays from Science 338 (6114) 1576-1582

Fit two-dimensional *templates* parametrizing the energy surrounding **each** photon

- one template for signal and one for each type of background
- integral of γj+jγ+jj templates in the isolated region = # background events

Observation of Wyy production with a significance of 5.6 σ <u>arXiv:2308.03041</u>

3/

Observation of WWW production with a significance of 8.0 σ

Phys. Rev. Lett. 129 (2022) 061803

Observation of WZy production with a significance of 6.3σ

arXiv:2305.16994

